
At the End of Synthesis:
Narrowing Program Candidates

David Shriver, Sebastian Elbaum
Computer Science and Engineering Department

University of Nebraska
Lincoln, NE, USA

{dshriver, elbaum}@cse.unl.edu

Kathryn T. Stolee
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
ktstolee@ncsu.edu

Abstract—Program synthesis is succeeding in supporting the
generation of programs within increasingly complex domains.
The use of weaker specifications, such as those consisting of
input/output examples or test cases, has helped to fuel the
success of program synthesis by lowering adoption barriers. Yet,
employing weaker specifications has the side effect of generating
a potentially large number of candidate programs. This was not
a problem for simpler and smaller program domains, but it is
becoming evident that differentiating among many synthesized
programs is a challenge that needs addressing. We sketch an
approach to mitigate this challenge, requiring less effort from the
user while automatically identifying inputs that can differentiate
clusters of synthesized programs. The approach has the potential
to more cost-effectively narrow the space of candidate programs
in a range of synthesis applications.

Keywords-program synthesis, pruning, input generation

I. INTRODUCTION

Inductive program synthesis techniques semi-automatically
derive a set of programs that satisfy a specification. There
are a myriad of synthesis approaches ranging from analytical
to logical [1]. There are also many forms of specifications
ranging from logic formula to input/output examples. These
specifications are known to be incomplete in that they only
describe part of the desired program behavior, leading to
solutions that are only sound in relation to the incomplete
specifications, but unsound in general. Yet, inductive synthesis
has achieved remarkable success in the last few years for
domains including spreadsheet transformations [2], string ma-
nipulation [3], program repair [4]–[6], number formatting [7],
parser synthesis [8], bit-streaming programs [9], and source
code snippet synthesis [10], [11].

These recent successes can be attributed to at least three
factors. First, technical advances in solvers and analysis al-
gorithms, and additional computation power at the reach of
many users, have made synthesis faster and more powerful.
Second, the domains on which synthesis is being performed
have been strategically chosen; programs in those domains
can be encoded with relatively simple grammars. Third, the
application of synthesis in the targeted domains requires
simple specifications, either from the end-user or from test
cases, and often in the form of input and output example pairs.

We expect for the first factor to continue its current
evolution as computational power and solver-analysis speed
continue to increase. For the second factor, although many of
the “lower hanging fruit” domains have been identified, the

additional power and speed enables targeting richer domains.
We are not as optimistic, however, about the third factor.

As synthesizers create larger and more complex code, the
space of potential solutions for a weak specification will tend
to increase. This intensifies the burden on the client of the
synthesizer, whether it’s a user selecting a program [2], [3],
a program repair engine creating a patch [4], [5], or a code
search tool retrieving ranked matches [10], [11]. Independent
of the client, lowering this burden implies having more com-
plete and precise user specifications (i.e., more input/output
examples). We conjecture, however, that requesting users for
more useful examples to refine the space of synthesized
programs is rapidly becoming the next bottleneck as synthesis
scales to more complex problems.

In this work we focus on one dimension of this challenge,
the one occurring at the end of the synthesis process when the
specifications provided are deemed enough to generate many
candidates that need to be narrowed down to a winner.

Our first insight to address this problem is: narrowing the
set of synthesized program candidates is (in part) an input
generation problem. That is, we want to flip the problem
from one of synthesizing programs, to one of synthesizing
inputs, which is something that automated input generation
techniques can do really well. Now, we do not want just any
inputs. We need inputs that can differentiate among candidate
programs and help us narrow them quickly, which, as we show,
requires some adaptation. At this point we can leverage our
second insight: in most cases it is easier for users to derive the
output for a given input, than to find a differentiating input
and compute its corresponding output. As a result, we can
reduce the load on users by requesting from them just the
corresponding expected output to an automatically generated
differentiating input.

Next, we will illustrate the challenge of refining input/output
example specifications, outline an approach that builds on our
key insights, and show a preliminary implementation within
the data wrangling domain.

II. MOTIVATION

To explain the extent of the problem, we employ a use case
from the Zipfian Academy, a group that teaches how to analyze
large data sets1. In this use case, a fictional scientist wants to

1http://nbviewer.ipython.org/github/Jay-Oh-eN/happy-healthy-hungry/
blob/master/h3.ipynb



TABLE I: Inputs and Output Example

(a) Business Information Table (input 1)
bus id name address city state latitude longitude phone
16441 “HAWAIIAN DRIVE” “2600 SAN BRUNO AVE” “SFO” “CA” NA -122.404101 NA
61073 “FAT ANGEL” “1740 O’ FARRELL ST ” “SFO” “CA” 0.0 -122.433243 NA
66793 “CP - ROOM D14” “ CANDLESTICK PARK ” “SFO” “CA” 37.712613 -122.387477 NA
1747 “NARA SUSHI” “1515 POLK ST ” “SFO” “CA” 37.790716 NA NA
509 “CAFE BAKERY” “1365 NORIEGA ST ” “SFO” “CA” 37.754090 0.0 NA

(b) Inspection Table (input 2)
bus id Score date
509 85 20130506
1747 93 20121204
16441 94 20130424
61073 98 20130422
66793 100 20130112

(c) Output Table
bus id name address Score date latitude longitude
66793 “CP - ROOM D14” “ CANDLESTICK PARK ” 100 20130112 37.712613 -122.387477

analyze San Francisco restaurant inspection data to understand
the “cleanliness of the city”. The data is available from the city
of San Francisco’s OpenData project. The challenge for the
scientist is that the data needs some wrangling (e.g., merging,
formatting, filtering) before it can be analyzed. For example,
the scientist needs to join Table Ia, containing business in-
formation, and Table Ib, containing inspection data, and then
filter rows with invalid latitude and longitude values to obtain
the output shown in Table Ic. Zipfian Academy teaches how
to write a series of python scripts that include calls to libraries
that (1) merge two tables, (2) select the rows containing valid
data, and (3) select the columns needed for the visualizations.

An alternative approach to writing such scripts that requires
less user expertise involves the semi-automated synthesis of a
program that performs the multi-step data wrangling.

We have built a small synthesis engine that generates data
wrangling programs from tabular-form input/output examples,
where the programs can consist of union, join, filter rows,
filter columns, compare columns, sort, and unique operations,
similar to that of Guo, et al. [12]. To illustrate, we describe the
semantics of three operations used by synthesized candidate
programs for the example in Table I (described next).

• Join takes two tables (tab0, tab1) and two column in-
dices (col0, col1) and returns a single table containing
each row of tab0 combined with each row of tab1 if
tab0.col0.val = tab1.col1.val.

• Filter rows takes a table, column index, and list of values,
and removes rows that contain any of the given values in
the specified column.

• Select takes a table and a list of column indices as input
and removes all columns that are not in the provided list.

The synthesis engine consumes input/output examples and
systematically explores valid combinations of operations to
generate programs that satisfy the examples. In our evaluation,
this synthesis engine generates 4,418 satisfying programs for
the example in Table I, two of which are shown in Figure 1.
At this point, the user has to make a choice.

First, the user can select a program hoping that it meets the
desired specification. Although all of the generated programs
satisfy the constraints imposed by the example, the likelihood
of selecting the right one is low as only two meet the user
expectations (2/4,418 = 0.05%). Recent advances in ranking

t1← join(input1, input2, col0, col0)
t2← filter(t1, col5, [0.0, NA])
t3← filter(t2, col6, [0.0, NA])
output← select(t3, [0, 1, 2, 9, 10, 5, 6])

(a) A correct program

t1← join(input1, input2, col0, col0)

t2← filter(t1, col5, [NA])

t3← filter(t2, col6, [0.0,−122.433243, NA])

output← select(t3, [8, 1, 2, 9, 10, 5, 6])

(b) An incorrect program that filters out the wrong rows

Fig. 1: Two programs generated during synthesis that meet the
input/ouput example specification from Table I.

and navigating the space of synthesized programs [6], [13],
[14] can mitigate this challenge, but increasingly that is not
enough even for simple domains like tabular data wrangling
due to the large space of synthesized programs with subtle but
meaningful differences.

Second, the user can grab a program and tailor it to meet
the desired specification. The likelihood of success in this case
depends on the edit distance between the program selected and
the desired program, and the ability of the user to tailor that
program. We argue that as the targeted synthesis domains get
more complex and reach more users, the distances will become
larger and it is not clear that users should be expected to
know the underlying programming language any better. Again,
better navigation among the synthesized programs could help
mitigate but not solve this challenge.

Third, the user can provide further input/output examples,
strengthening the specification. The synthesis process can then
leverage these input/output examples to refine the set of pro-
grams. Synthesis proponents favor this third option as it keeps
users from sifting through many programs that may include
challenging and unfamiliar constructs. However, this assumes
that the user is able to come up with input/output examples
that can strengthen the specification, which is not always the
case. Once a solution space of programs has been generated
after exhausting a set of given input/output examples, it can
be challenging to provide further input/output examples that
can effectively differentiate among those programs.

In the context of our scenario, consider the synthesized
programs in Figures 1a (correct) and 1b (incorrect). Both



programs have the same operations, just their filter parameters
vary. To differentiate these simple programs the user must
construct an input with a row that has 0.0 in the 5th column
and not have 0.0, -122.433243, NA on the 6th column,
or an input with a row that has -122.433243 in the 6th
column and not have 0.0 or NA in the 5th column. As
operations and programs grow more complex, it will become
more difficult for users to come up with such differentiating
inputs.

The approach we introduce in the next section addresses
this challenge. Specifically, for the given scenario, it allows
for the solution space for our running example to be pruned
to two functionally equivalent programs after automatically
generating three additional inputs coupled with user outputs.

III. APPROACH

We envision an approach aimed at narrowing the space
of synthesized programs with less user effort, which we call
SIPPS (Synthesizing Inputs to Prune Program Spaces). The
approach is illustrated in Figure 2 and consists of:

1) Generating inputs from existing input/output examples.
2) Executing every input on every candidate program.
3) Clustering programs and selecting the “best” differenti-

ating input based on the cluster structure.
4) Requesting the user to compute the output corresponding

to that best input.
5) Pruning programs that produced a different output for

that best input.
6) Repeating the process with candidate programs in the

remaining cluster.
Implementation. We now describe an instantiation of SIPPS,
as well as some alternatives we are exploring, for the data
wrangling domain that operates on tabular forms such as the
ones that we described earlier.
(1) For input generation, SIPPS takes the maximum number
of rows in a table (it assumes the columns are fixed; S in
Figure 2). When setting this parameter the user must consider
that larger inputs are more likely to differentiate programs,
but at the same time they will be more difficult for the user
to understand and provide the corresponding output. SIPPS
also takes the number of differentiating inputs to generate per
iteration (n in Figure 2), and a terminating condition consisting
of the number of inputs to try in an iteration before stopping
the process (t in Figure 2).

2. Execute

3. Cluster

5. Pruning

1. Input 
Generation

Program 
Candidates

4. User 
Output

Best 
Input

S, Size of Input

Repeat n times6. Remaining 
Candidates

n, Number of Inputs
t, Terminating condition

Initial User 
Inputs

(max number of rows)

Fig. 2: SIPPS architecture

4418

1324

36 2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 2 3 4

N
u

m
b

er
 o

f 
P

ro
gr

am
s

Number of Examples

Fig. 3: Narrowing of the program space after each intput/ouput
example is added to the synthesizer.

SIPPS then generates inputs by randomly permuting the ex-
ample’s input values within columns. For our scenario, to gen-
erate input values for “latitude”, we sample from {NA, 0.0,
37.712613, 37.790716, 37.754090}. We assume
these values cover a rich enough sample of initial data that has
not yet been fully explored in combination with the values of
other columns. We also believe that by using values familiar
to the user it will be easier to derive the corresponding output
later in the process.

We have also started to explore the use of symbolic exe-
cution to generate inputs that are more likely to differentiate
programs by incorporating further constraints into the process
(connecting “Program Candidates” with “Input Generation” in
Figure 2), searching for inputs that satisfy all the constraints
in one program but violate at least one constraint in another
program. In spite of our initial enthusiasm for this symbolic
implementation, the input space for this domain was small
enough that generating random permutations and executing
them on all programs was more cost-effective for identifying
differentiating inputs than the symbolic approach.
(2) Once 1 to n differentiating inputs are generated, all
candidate programs are executed and their outputs are hashed
and used as the base for the clustering. This process can be
computationally expensive but it is also trivially parallelizable.
(3) After obtaining all program outputs, the clustering process
starts. Given an input, programs that generate the same output
hash are clustered together. This simple and quick clustering
scheme works well with the explored data set, but we have
also started to incorporate notions of program distances to have
more subtle forms of clustering. The clustering set resulting
from an input is evaluated based on the number of clusters
in the set. The input that produced the clustering set with
the largest number of clusters is chosen. Ties are broken by
choosing the input that produced the set with the smallest
variance in the size of the clusters.
Scenario. In our motivating example, 4,418 programs are
initially synthesized from the input/output example in Table I.
We set the implementation maximum input size to S=4 rows,
after exploring with a range of sizes from 2 to 10. We set
the number of differentiating inputs generated per iteration to
n=10, with a bound of t=100 non-differentiating inputs to
be tried before terminating the process.



TABLE II: Random input generated by approach to differentiate programs

(a) Generated input table 1
bus id name address city state latitude longitude phone
1747 “CAFE BAKERY” “ CANDLESTICK PARK” “SFO” “CA” NA -122.433243 NA
66793 “HAWAIIAN DR” “2600 SAN BRUNO AVE” “SFO” “CA” 37.790716 0.0 NA
61073 “CAFE BAKERY” “1365 NORIEGA ST ” “SFO” “CA” 0.0 0.0 NA
16441 “CAFE BAKERY” “1365 NORIEGA ST ” “SFO” “CA” 37.712613 -122.404101 NA

(b) Generated input table 2
bus id Score date
1747 100 20130424
1747 93 20130112
61073 100 20121204
66793 98 20130422

When SIPPS was run on the motivating example, the input
that produced the best clustering during the first iteration is
shown in Table II. This input partitioned the program space
into 16 distinct clusters with a median cluster size of 145
programs. This input is shown to the user, who then provides
the corresponding output (step (4) in Figure 2), which in this
case is an empty table. Then, the cluster of programs that
produced the empty table, which has 1,324 programs ((step (5)
in Figure 2), is selected for the following narrowing iteration
(step (6) in Figure 2). Figure 3 shows the number of candidate
programs remaining after each iteration. The program space
is reduced to two programs after three additional input/output
examples, after which the process is terminated as the bound
of 100 inputs is reached without being able to differentiate
those programs. Manual inspection of the two remaining
programs showed that they were functionally identical. The
entire pruning process took 443 seconds.

IV. RELATED WORK

The closest related work is that of Mayer et al. [13]. They
target, within the domain of semi-structured data extraction,
the same challenge by providing heuristics to rank synthesized
programs, tools to navigate them, and reusing some of inputs
(it assumes enough are already available) to narrow the candi-
dates. We relax that assumption (so some inputs may indeed
be missing), increasing the scope of the problem, and build on
the insight that narrowing the space of generated programs can
be stated as an input generation problem, which allows us to
connect synthesis and test generation. Prophet [6] is similar in
its goal of helping navigate the space of synthesized programs
(i.e., patches for program repair), but it uses a language model
to rank programs based on similarity to prior program patch
structures. Oracle-guided component-based program synthe-
sis [15] is similar in its use of differentiating inputs, but
it seeks to find a single differentiating input, rather than
a differentiating input that maximally divides the space of
synthesized programs. Additional related work on program
synthesis and its clients was briefly presented in Section I
and II and is not discussed due to space constraints.

V. CONCLUSIONS AND FUTURE WORK

As synthesis techniques become more powerful and their
clients more prevalent and diverse, we contend that the bot-
tleneck will shift to the users’ ability to provide specifications
that are effective at narrowing the set of synthesized solutions.
We sketch an approach, SIPPS, aimed at aiding clients by gen-
erating this specification in the form of an input example that
can differentiate among the synthesized programs, and asks the
user just for the corresponding output, reducing the required

effort. The approach is novel in how it connects synthesis and
test generation to reduce that effort. We have yet to (1) assess
the assumption about the cost of evaluating just an output
being lower than that of generating a complete input/output
example, (2) evaluate the cost-effectiveness of executing all
synthesized programs during clustering, and (3) explore the
spectrum of potential synergy between different test generation
and synthesis approaches across different domains.

ACKNOWLEDGEMENT

This work has been supported in part by National Science
Foundation Awards #1526652, #1526253, and #1645136.

REFERENCES

[1] E. Kitzelmann, Inductive Programming: A Survey of Program Synthesis
Techniques. Springer Berlin Heidelberg, 2010, pp. 50–73.

[2] W. R. Harris and S. Gulwani, “Spreadsheet table transformations from
examples,” in Proceedings of the Conference on Programming Language
Design and Implementation. ACM, 2011, pp. 317–328.

[3] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the Symposium on Principles of
Programming Languages. ACM, 2011, pp. 317–330.

[4] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis,” in Proceedings of the
International Conference on Software Engineering. ACM, 2016, pp.
691–701.

[5] ——, “Directfix: Looking for simple program repairs,” in Proceedings
of the International Conference on Software Engineering - Volume 1.
IEEE, 2015, pp. 448–458.

[6] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” SIGPLAN Not., vol. 51, no. 1, pp. 298–312, Jan. 2016.

[7] R. Singh and S. Gulwani, “Synthesizing number transformations from
input-output examples,” in Proceedings of the International Conference
on Computer Aided Verification. Springer-Verlag, 2012, pp. 634–651.

[8] A. Leung, J. Sarracino, and S. Lerner, “Interactive parser synthesis by
example,” SIGPLAN Not., vol. 50, no. 6, pp. 565–574, Jun. 2015.

[9] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioğlu, “Programming
by sketching for bit-streaming programs,” SIGPLAN Not., vol. 40, no. 6,
pp. 281–294, Jun. 2005.

[10] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen, “Codehint:
Dynamic and interactive synthesis of code snippets,” in Proceedings of
the International Conference on Software Engineering. ACM, 2014,
pp. 653–663.

[11] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for
source code,” ACM Transactions on Software Engineering Methodology,
vol. 23, no. 3, pp. 26:1–26:45, May 2014.

[12] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer, “Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts,”
in Proceedings of the Symposium on User Interface Software and
Technology. ACM, 2011, pp. 65–74.

[13] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov,
R. Singh, B. Zorn, and S. Gulwani, “User interaction models for
disambiguation in programming by example,” in Proceedings of the
Symposium on User Interface Software; Technology. ACM, 2015, pp.
291–301.

[14] K. T. Stolee, S. G. Elbaum, and M. B. Dwyer, “Code search with
input/output queries: Generalizing, ranking, and assessment,” Journal
of Systems and Software, vol. 116, pp. 35–48, 2016.

[15] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in International Conference on
Software Engineering, vol. 1. IEEE, 2010, pp. 215–224.


