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Abstract. The field of verification has advanced due to the interplay of
theoretical development and empirical evaluation. Benchmarks play an
important role in this by supporting the assessment of the state-of-the-
art and comparison of alternative verification approaches. Recent years
have witnessed significant developments in the verification of deep neural
networks, but diverse benchmarks representing the range of verification
problems in this domain do not yet exist. This paper describes a neural
network verification benchmark generator, GDVB, that systematically
varies aspects of problems in the benchmark that influence verifier perfor-
mance. Through a series of studies, we illustrate how GDVB can assist in
advancing the sub-field of neural network verification by more efficiently
providing richer and less biased sets of verification problems.

Keywords: Neural Network, Verification, Benchmark, Covering Array

1 DMotivation

Advances in machine learning have enabled training of deep neural networks
(DNN) that are capable of realizing complex functions that rival or exceed the
performance of human-built software, e.g., [32I274T]. This success has led sys-
tem developers to deploy, or consider deployment of, DNN models in critical
systems, e.g., [12I5339]. Consequently, the verification of correctness proper-
ties of DNNs has become a key challenge to assuring autonomous systems,
and the research community has risen to this challenge. In the three years
since Katz et al. [30] presented RELUPLEX at CAV 2017, researchers have
published more than 20 DNN verification approaches supporting different prop-
erties and DNN architectures and spanning a range of algorithmic approaches
[2003046322/46/50156/0/TaI624515960I6 THI29T3IT8ITAI36U3T]. While DNN verifica-
tion has its own unique challenges, it is also a recent example in the long-history of
domain-specific verification research, e.g., for hardware[25], software[I7], real-time
systems[58|, and cryptographic protocols[40)], and can benefit from the experience
of these communities.

A key lesson learned by the community is that despite the fact that verification
emphasizes the development of theoretical and algorithmic techniques, advances
in verification research often arise from understanding how different algorithmic
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and implementation approaches compare — a process that requires empirical
study. Empirical study in verification is common, but unlike many other fields
of computer science, for decades it has organized verification tool competitions
that serve as a regular and long-running form of community-driven empirical
study. Researchers tracked the progress of SMT solvers over a span of 6 years at
these community-driven empirical studies and found that repeatedly “a certain
solver presents a key idea that improves the performance in a particular division,
and this idea is implemented by most solvers” in the following year [7]. Enabling
the type of comparative studies that drive such advances requires verification
benchmarks — a fact that the verification community has recognized for at least
25 years, e.g., [55I3343IT0IR].

Benchmarking in verification has evolved in response to the demands of
empirical study within the field, e.g., [3IT2], to support two objectives: (Al)
assessment of the state-of-the-art and (A2) comparison of alternative approaches.
In support of these, the verification community has favored benchmarks that:
(R1) are diverse in structure and difficulty; (R2) represent verifier use
cases; and (R3) evolve as verification technology advances.

The verification benchmarking and competition literature suggests that these
requirements are widely accepted. For example, the TPTP benchmark’s stated
goals include R1 ( “contains problems varying in difficulty”), R2 (“spans a diversity
of subject matters”), and R3 (“is up-to-date”, “provides a mechanism for adding
new problems”)[54]. Moreover, these requirements are promoted, either explicitly
or implicitly, by many of the regularly held verification competitions. To meet R1
and R2 SAT competitions construct benchmarks that include problems from six
different domains: software, hardware, A.I, obstruction, combinatorial challenges,
and theorem proving[4]. SAT competitions since 2017 have instituted a bring
your own benchmarks policy that requires verifier developers to submit 20 new
benchmarks with at least 10 that are “not too easy” or “too hard” — which helps to
address R1 and R3. SMT competitions have used selection criteria that are biased
towards these same requirements, e.g., “balancing the difficulty of benchmarks”[7].

Verification competitions have undoubtedly been a positive force for developing
high-quality verification benchmarks, but prior to their existence researchers were
forced to develop their own “benchmarks” — a collection of verification problems
on which they evaluate their techniques and perhaps others. This is the situation
that the subfield of DNN wverification finds itself in.

The risk in letting technique developers choose their own benchmark is
selection bias — that the selected problems do not represent a broad or important
population of problems. For example, if an SMT benchmark were selected based on
the constraints generated by symbolic execution tools they would be structurally
biased, consisting only of conjunctive formula. As another example, if a SAT
benchmark were generated randomly it is likely that a large portion of the
benchmark would not represent realistic use cases.

Good benchmarks are expensive to develop, e.g., [I1], but they are an invalu-
able resource for advancing a research community. When well designed they seek
to balance requirements R1-R3 and to support a fair and accurate assessment of
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the state-of-the-art and comparison between alternative algorithmic and imple-
mentation approaches. This paper reports on GDVB, the first framework for
systematic Generation of DNN Verification problem Benchmarks, that meets
the de-facto requirements for verification benchmarks, R1-R3, in order to support
objectives A1-A2 for the rapidly evolving field of DNN verification.

GDVB takes a generative approach to benchmark development — an ap-
proach that has risen in popularity in recent years [35I5/64]. Unlike, other gen-
erative benchmark approaches GDVB seeks to systematically cover variations
in verification problems that are known to influence verifier performance. To-
wards that end, GDVB is parameterized by: (1) a set of factors known to
influence the performance of DNN verifiers; (2) a coverage goal that determines
the combination of factors that should be reflected in the benchmark; and (3)
a seed verification problem from which a set of variant problems are generated.
From these parameters, it computes a constrained mixed-level covering array|[15]
defining a set of factor-value tuples. Each tuple defines how the seed verification
problem can be transformed to give rise to a verification problem capable of
exposing performance variation in a DNN verifier.

As a benchmark generator GDVB naturally meets requirement R3. By
starting from a seed network representing a DNN verification use case, GDVB is
guaranteed to meet R2. As we discuss in §4] the use of factors allows GDVB to
produce systematically diverse verification problems both in terms of structure
and difficulty in order to meet requirement R1. Moreover, GDVB offers the
potential to reduce selection bias in performing evaluations of DNN verifiers,
since it assures coverage of a space of performance related factors. Finally, GDVB
is designed to support the rapidly evolving field of DNN verifiers by allowing
the generation of benchmarks, e.g., from new seeds as verifiers improve, as new
performance factors are identified, and to target challenge problems in different
DNN domaiuns, e.g., regression models for autonomous UAV navigation [39/53].

The contributions of this paper are: identification of the need for unbiased
and diverse benchmarks for DNN verification; a study of factors that affect the
performance of DNN verification tools (; the specification of a verification
benchmark as the solution to a constrained mixed-level covering array problem
(; the GDVB algorithm for computing a benchmark from a verification
problem by transforming the neural network and correctness specification (;
the evaluation of GDVB on multiple state-of-the-art DNN verifiers using different
seed verification problems that demonstrates how GDVB results can support
the evaluation of DNN verifiers (§5); and the GDVB tool.

2 Background and Related Wok

Deep Neural Networks (DNN) A DNN is trained to accurately approximate
a target function, f : R — R”. A network, n : R? — R”, is comprised of a graph
of L hidden layers, l1,...,l;, along with an input layer, l;,, = ly, and output
layer, l,ut = l1,+1. Each hidden layer defines an independent function, where their
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composition when applied to the output of /;, generates values in [,,; that define
the network output.

Hidden layers are, generally, comprised of a set of neurons that accumulate a
weighted sum of their inputs from the prior layer and then apply an activation
function to determine how to non-linearly scale that sum to compute the output
from the layer. A variety of different activation functions have been explored in
the literature, including: rectified linear units (ReLU), sigmoid, and tanh.

The design of a DNN involves choosing an appropriate set of layer types, e.g.,
convolutional, maxpooling, fully-connected, the instantiation of those layers, e.g.,
the number of neurons, the specific activation function, and the definition of how
layers are interconnected. Together these comprise the DNN architecture [23].

Networks are trained using a variety of algorithmic strategies with the goal of
minimizing the loss in the approximation of the learned function relative to some
proxy for f, e.g., labeled training data. The training process is stochastic, e.g.,
initial weight values are randomized, which leads to variation in n even when
architecture, training algorithm, and training data are fixed.

reveals how DNN architecture can influence verification performance.

DNN Specifications Given a network n : R? — R", a property, ¢, defines a
set of constraints over the inputs, ¢, and an associated set of constraints over
the outputs, ¢,. Verification of n seeks to prove: V& € R? : ¢y (z) = ¢, (N(z))
where N(z) is running the neural network n with input z.

Specifying behavioral properties of DNNs is challenging and is an active area
of research [24]. In [30], a set of 188 purely conjunctive properties, of the form
described above, were defined for a simple neural network, with 7 inputs, encoding
of a rule set for autonomous aircraft collision avoidance (ACAS). In [44/60/59],
properties expressing output range invariants were used, for example, that the
steering angle never exceeded an absolute value of 30 degrees. Much of the work
on DNN verification has focused on local robustness properties [5IJ50/52], which
state that for a selected target input the output of the network is invariant for
other inputs within a specified distance of the target.

§3] reveals how the specification can influence verification performance.

DNN Verification Methods and Tools There are a variety of different
algorithmic and implementation approaches taken to verifying the validity of a
DNN with respect to a stated correctness property.

Definition 1. A DNN wverification problem, (n,¢), is comprised of a DNN, n,
and a property specification, ¢. The outcome of a verification problem for a DNN
verifier indicates whether n |= ¢ is valid, invalid, or unknown — indicating that
the problem cannot be determined to be either valid or invalid.

A recent DNN verification survey [37], classifies approaches as being based
on reachability, optimization, and search algorithms — or their combination.
Reachability methods begin with a symbolic encoding of an input set and compute,
for each layer, a symbolic encoding of the output set. They vary in the symbolic
encodings used, e.g., intervals, polyhedra, and in the degree of overapproximation
they introduce [6322/46/50]. Optimization methods formulate verification as an
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optimization problem whose solution implies the validity of ¢ [38I56/9/T9I62I45].
Search methods work in combination with reachability and optimization, by
decomposing the input space to formulate verification sub-problems that are
discharged by the above techniques [60J6TI29/T3J30JT4/59/T8I20].

In this paper, we use implementations of the following verifiers: ERAN [50],

BaB [14], NEURIFY [59], PLANET [20], and RELUPLEX [30].
Verification Benchmarking We covered the broad landscape of work on
benchmark development for verification in (§1)). There have been efforts to
develop benchmarks within a variety of different verification problem domains,
e.g. hardware[25], software[17], real-time systems[58], cryptographic protocols[40],
and for different encodings of verification problems, e.g., model checking [33],
SAT [], SMT [§], and theorem proving [55].

In recent work on DNN verification, researchers have shared collections of
examples that, in a sense, serve as informal benchmarks and permit comparative
evaluation, e.g. [30U50]. While valuable, these examples were not intended to, and
do not, comprise a benchmark meeting requirements R1-R3. To our knowledge,
GDVB is the first approach to achieving those goals for DNN verification.

For several years, the SAT community has been exploring scalable benchmarks,
e.g., [35l21]. For instance, to explore conflict-driven clause learning (CDCL) SAT
solver performance, Elffers et al. [21] used crafted parameterized benchmarks that
can be scaled with respect to different factors that may influence performance.
We conduct a similar domain analysis of factors, but focus on the landscape of
DNN verification algorithms developed to date. Like this line of work, GDVB
advocates a scalable approach to benchmark generation. As described in §4]
GDVB starts with seed problems that are challenging for current verifiers and
“scales them down”, but it can also be applied to start with easier seed problems
and “scale them up” as more typical of the prior work on scalable benchmarking.

Verification Benchmark Ranking The verification community has explored
a variety of ranking schemes for assessing the cost-effectiveness of techniques. A
key challenge is that verification techniques vary not only in their cost, e.g., time
to produce a verification result, but also in their accuracy, e.g., whether they
produce an unknown result. For example, SAT competitions have employed a
range of scoring models, e.g., purse-based ranking, solution-count ranking (SCR),
careful ranking, and penalized average runtime (PAR2) [6]. SCR, which counts the
number of solved problem instances and uses verification time as a tie breaker [57],
is the scoring system of choice [4[1]. In we report DNN verifier performance
using both SCR and PAR2 scoring systems.

Covering Arrays In §3|we explore factors that influence DNN verifier perfor-
mance. Studying all their combinations would be cost prohibitive, so we consider
weaker notions of coverage.

A covering array defines a systematic method for testing how combinations
of parameter values influence system performance [I6]. A covering array is an
N x k array. The k columns represent factors that may influence performance
and cells can take on v levels — defining settings for factors. The N rows of the
array define combinations of factor-levels. Arrays are defined to achieve a strength
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of the coverage, t. t = 2 defines pairwise strength, which means that all pairs of
levels for all factors are present in some row of the covering array.

We require a richer form of covering array that permits the number of levels to
vary with different factors, i.e., a mixed-level covering array (MCA), and that can
constrain specified factor-level combinations, e.g., by forbidding their inclusion
in the MCA. By modeling each factor as a variable and its levels as the domain
of the variable, one can express constraints as propositional logic formulae over
equality terms; if the levels are ordered then richer underlying theories can be
applied. A constrained-MCA defines an MCA that is consistent with a given
constraint, C.

Definition 2. Constrained Mized-level Covering Array (Def. 2.9 from [15])
CMCA(N;t, k, (Jui], [va|, ... o), C) is an N x k array on |v| symbols, where
lv| = Zf:o lvi|, with the following properties: 1) Each column i(1 < i < k)
contains only elements from a set S; of size |v;|, 2) the rows of each N x t
subarray cover all t-tuples of values from the t columns at least one time, and 3)
all rows are models of C.

Transforming Neural Networks The GDVB approach manipulates factors
that influence DNN verifier performance to construct a diverse benchmark. For
DNN counstruction, we leverage a recent approach, R4V [47], that given an original
DNN and an architectural specification automates the transformation of the
DNN and uses distillation[28] to train it to closely match the test accuracy of
the original DNN. R4V transformation specifications can be written to change a
number of architectural parameters of a network including: the input dimension,
the range of values for each input dimension, the number of layers, the number
of neurons per layer, the number of convolutional kernels, and the stride and
padding of a convolutional layer.

3 Identifying Factors that Influence Verifier Performance

As discussed in §1|the verification community has acted to create policies that
incentivize diverse benchmarks. Diversity is desirable in a benchmark because
it (a) demonstrates the range of applicability of a verification technology and
(b) exposes performance variation within and across verification technologies.
Consider, that the SMT competition benchmark selection process seeks to “include
equal numbers of satisfiable and unsatisfiable benchmarks at different levels of
difficulty”[7]. This is due to the fact that the SMT community understands
that the satisfiability or unsatisfiability of a benchmark problem is a factor that
influences verifier performanceﬂ

GDVB seeks to make factors influencing verifier performance explicit and to
manipulate them to generate a diverse benchmark. To determine an initial set
of factors for DNN verifiers we began with an analysis of the literature, which

! Since unsatisfiability requires the consideration of all possible variable assignments
which generally is more costly than finding a single satisfiable assignment.
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identified several candidate factors, and then conducted a targeted and exploratory
factor study to identify whether manipulating a factor could influence some
performance measure of some DNN verifier. This study only aims to identify
such factors and does not seek to characterize the complex relationship between
factors and DNN verifier performance; for example, we do not aim to capture
a comprehensive set of factors, assess the independence of or relations between
factors, or rank factors in terms of their degree of influence. A richer and more
detailed factor study might further improve the utility of GDVB, but we leave
such a study to future work.

3.1 Potential Factors

Relatively few published papers on DNN verification explicitly discuss the fac-
tors that influence performance, but nearly all of them present metrics on the
verification problems they solved.

Evaluation results for RELUPLEX present data on verifier outcome and solve
time for local robustness properties that vary in the input center point and
radius [30]; most subsequent papers report similar property variation. Evaluation
results for ROBUSTVERIFIER present a study of varying the number of layers
in the DNN and its impact on verifier performance[36]. Evaluation results for
ERAN present performance variations across a range of networks varying in the
number of layers, layer types, and neurons[22I5TI50/52]. Bunel et al. [I4] were the
first that we are aware of to explicitly vary factors of DNN verification problems.
They found that the performance varied with input dimension, number of neurons
per layer, and number of layers across a set of 6 different DNN verifiers. All of the
other papers published on DNN verification in recent years have used verification
problems that varied, in an ad-hoc fashion, over a subset of the above factors.

3.2 Exploratory Factor Study

As in other verification domains, DNN verifier performance is multi-faceted. In
our study, we consider both verification time and accuracy. We say that the result
of a verification problem is accurate if a verifier determines conclusively that the
problem is valid or tnwvalid, result as opposed to unknownﬂ

We study factors associated with both properties and DNNs. Based on the
literature analysis, we identified 2 factors related to the correctness property:
scale and translation. Scaling a property involves increasing the size of the input
domain which will involve more DNN behavior in verification. Translating a
property involves moving it to a different location in the input domain which will
involve different DNN behavior in verification. For robustness properties, scaling
and translation involve changing the radius and center point of the hypercube
describing the input space under verification. One might wonder whether rotation
of a property can influence verification performance. For robustness properties,

2 We cross-check accurate results with multiple verifiers.
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Fig. 1. DNN Verifier Performance Across Factors

this seems unlikely given their symmetry, but it could be a factor for more
irregular input regions — we leave this for future work.

Based on the literature analysis, we identified 4 factors related to the DNN:
number of neurons, number of layers, the type of layers, the input dimension. We
conjectured that an additional 3 factors might impact verifier performance: the
type of activation function, the input domain size, and the learned weights.

Our exploratory factor study is opportunistic in that we seek to find a verifi-
cation problem for which manipulation of a selected factor exhibits performance
variation. Towards this end, we conducted a series of trials where we vary a factor
hypothesized to influence verification performance, while holding all other factors
constant and report the results in Fig. [l We studied variations of networks for
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the MNIST task and considered local robustness properties since these were well-
supported across a range of different verifiers. We used different verifiers across
the study: RELUPLEX, PLANET, NEURIFY, BAB, ERAN with the DeepPoly
(DP) and DeepZono (DZ) abstract domains. We now briefly describe the trials
and then summarize the outcome.

Number of Neurons: The architecture of the DNN was fixed, with 4 fully-
connected layers using ReLLU activation functions, and the total number of neurons
was varied (16, 64, 256) — they were spread evenly across layers. Each network is
trained 10 times and verified on 100 local robustness properties. Fig. (a) plots
the number of neurons versus verification time for PLANET. Verification time
can increase with the number of neurons.

Number of Layers: We use the same context as for the neuron factor study,
except that we fixed the number of neurons at 256 and vary the number of layers
(1,2,4). Fig. [1{b) plots the number of layers versus verification time for PLANET.
Verification time can increase with the number of layers .

Layer Types: We use a pair of two-layer neural networks, with the same
number of neurons, where one has a fully-connected layer and the other a
convolutional layer. Each network is trained 10 times and verified on 10 local
robustness properties. Fig. c) plots layer type versus the number of properties
for which accurate results are produced using ERAN pp. Verification accuracy
can vary with layer type.

Activation Function: We use the fully-connected network from the layer
types study, we generated three networks by altering the activation function to
use sigmoid and tanh. The training setup and properties remain the same as in
the previous trial. Fig. d) plots the activation function versus the number of
properties for which accurate results are produced using ERAN pp. Verification
accuracy can vary with activation function.

Input Dimension: We use 3 architectures that differ only in their input
dimension which is scaled (%, i 1) relative on the original problem. The training
setup and properties are from the layer type study. Fig. (e) plots the input
dimension versus the number of properties for which accurate results are produced
using BAB. Verification accuracy can increase with increasing input

dimension.

Input Size: We use 5 architectures that differ only in the range of values of
their inputs which are scaled (i, %, 1,2,4) based on the original problem. The
training setup and properties are from the layer type study. Fig. (f) plots the
input size versus the number of properties for which accurate results are produced
using ERANp . Verification accuracy can decrease with increasing in-

put domain size.

Property Scale: We use a single-layer network and reuse the training setup
and properties from the layer type study. We scale the properties (0.01 — 0.1)
to generate verification problems. Fig. g) plots property scaling versus the
verification time using RELUPLEX. Verification time can increase with
increasing property scale.
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Property Translation: We replicated the property scale study, but held
the scale fixed and translated the center point of the local robustness property
to 10 other locations. Fig. h) plots the number of DNNs for each of the 10
translated properties for which accurate results could be produced using NEURIFY.
Verification accuracy can vary with property translation.

Network Weights: Building of the property studies, we explore the verifi-
cation of 10 scaled property variants across the same network trained 10 times
with different initial weights. Fig. [I[i) plots the number of accurate properties
for which the results could be produced using PLANET. Verification accuracy
can vary with the learned weights of the network.

Exploraty Study Findings Varying the factors studied influences the per-
formance of different DNN verifiers differently — in terms of time or accuracy.
For example, we found that: varying input dimension impacts BAB’s accuracy,
but not RELUPLEX’s; varying input domain size impacts ERANpz’s accuracy,
but not NEURIFY’s; and varying property scale impacts RELUPLEX’s verification
time, but not NEURIFY’s.

This study provides a starting set of viable factors that can be used to
parameterize the GDVB approach to produce verification problem benchmarks
in which those factors are systematically varied. Futhermore, as we discuss in §4]
GDVB generative process allows for us to accommodate information about new
factors that might be revealed in future factor studies.

4 The GDVB Approach

The goal of GDVB is to meet requirements R1-R3 by producing a factor
diverse benchmark that (a) reflects aspects of the complexity encoded in a
real verification problem that acts as a seed for generation(ns, ¢,) , (b) varies
aspects of the problem that are related to verifier performance, (c) accounts
for interactions among those factors, and (d) is comprised only of well-defined
verification problems.

Rather than synthesize random verification problems, we seed the generation
process in order to generate a benchmark that reflects the complexity of the
seed problem. This permits benchmarks to be generated to reflect the challenges
present in different DNN problem sub-domains.

Factors, like those described in §3] may interact; changes to one factor may
mask or amplify DNN verifier performance changes arising from another. Ex-
ploring all combinations of factors is expensive, but by using covering arrays
we can systematically explore interactions among factors. Accounting for such
interactions helps to produce a benchmark that is less biased than one that only
covers individual factor variations.

Not all combinations of factors are possible. For example, if one reduces the
number of layers in a network to 0, then it is not possible to preserve the number
of neurons in the original network. Thus, benchmark generation must take into
account constraints among factors to ensure that only well-defined problems are
included in a benchmark.
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4.1 Factor Diverse Benchmarks

Consider a set of factors, I, with a set of levels, Ly, for each factor, f € F'; we
refer to Ly as the level set of f. For a verification problem, p, let I(p) be the
set of factor levels corresponding to the problem. A benchmark, B, is a set of
verification problems and we can denote the factor levels for the benchmark as
I(B)={l(p) | p € B}.

The simplest form of diversity for a benchmark is requiring that all individual
factor levels be present in at least one verification problem, Vf € F : VI €
Ly :3p € l(B) : I € p. However, this diversity fails to account for interactions
among factors. The simplest form of interaction-sensitive diversity considers
pairs of factors, but as we discuss below our approach generalizes to any arity of
factor-level coverage.

For a pair of factors, f, f/ € F, the Cartesian product of their level sets
defines the set of all pairwise combinations of their levels. Across all factors the
set of such pairs is pairs(F) = {(l,I') | f,f'€e FANf# f ANle Ly Nl' € Ly}, A
pairwise diverse benchmark is one in which

V(z,y) € pairs(F): 3p € I(B) : (z,y) € {(z',9) | 2’ e pAy € p}

Constraints on allowable combinations of factors serve to restrict a benchmark.
A pairwise exclusion constraint, v(F') C pairs(F'), requires that

V(z,y) €v(F):Vpel(B): ~(xr €pAy€Ep)

We write v when F' is understood from the context.

The arity of factor-level coverage and exclusion constraints can vary indepen-
dently. It is common for factor-level coverage to be uniform and to generalize it to
t-way coverage, i.e., to require coverage of the elements of the Cartesian product
of the level sets of ¢ factors. On the other hand, as observed in prior work [15],
constraints generally involve a mix of arity. To denote this generality we define
I' C |J; vi where ; defines the set of possible i-way exclusion constraints.

Example. Consider the DAVE-2 DNN which accepts 100 by 100 color images
and infers an output indicating the steering angle[12]. DAVE-2 is comprised
of 5 convolutional layers with 55296, 17424, 3888, 3136, and 1600 neurons,
respectively, followed by 4 fully connected layers with 1164, 100, 50, and 10
neurons, respectively. All 82668 neurons use ReLU activations. One can define a
local robustness property for DAVE-2 as

¢ =Vax €i+0.02: |[DAVE-2(z) —- DAVE-2(i)|| <5

which states that for a given an input image, 4, all inputs within a distance of
0.02 will result in an inferred steering angle within 5 degrees of the angle for i.
These yield the verification problem (DAVE-2, ¢).

Consider factors for the number of neurons, number of convolutional layers,
and number of fully-connected layers; a tuple (#neuron, #conv, # fc) represents
levels for these factors. For each factor consider two percentage levels: 100%
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and 50%. A neuron factor level of 50% indicates that a version of DAVE-
2 with 41334 neurons is required. In the absence of constraints, an example
pairwise factor diverse benchmark for (DAVE-2, ¢) consists of the following four
verification problems: (100%, 100%, 100%), (100%, 50%, 50%), (50%, 100%, 50%),
and (50%, 50%, 100%). The property ¢ is constant across the benchmark.

4.2 From Factor Covering Arrays to Verification Problems

Given a set of factors, F' = {f1, fo,..., fip|}, and levels, Ly,, a t-way factor
diverse benchmark of %k verification problems is specified by

CMCA(|F|;t, k, (ILf1|’ |Lf2|7 sy |Lf\p| |)aF>

Each element in this mixed level covering array specifies how to construct a
verification problem in the benchmark from the seed problem.

Levels are operationalized as transformations on verification problems. We
assume a sufficient set of transformations, A, such that a verification problem
can be transformed into a form that achieves any level of any factor

VfeF:ViyeLy:35€ A:ly €l(6((ns,ds)))

The definition of A and L; must be coordinated to achieve this property.

A per-factor transformation § € A may impact a single component of a
verification problem, e.g., reducing the number of neurons in a DNN does not
impact the property, or both components, e.g., the input dimension impacts the
DNN and the property by transforming the input data domain. The set of all
transformations A defines the set of verification problems that can be produced
by application of a set of per-factor transformations to the seed problem,

A(<n8,q’)s>) = {<n7¢> | <n7¢> = 6f1 06f2 s 06f|F|(<nS’¢S>) No; € A}

The set of all possible factor level combinations is II;cr Ly, i.e., the product
of all of the per-factor levels. The set of t-way factor level combinations is

o ={cla€ HjepLy NcCaAlc =t}
allowing for the interpretation of |F|-tuples as sets.

Definition 3. Given a set of factors F', with associated factor levels Ly, a t-way
factor diverse benchmark, B, for a seed problem (ns, ¢5) with exclusion constraints
I' is defined by the following: (1) B C A({ns, ¢s)); (2) V(n,¢) € B:Vy e I':
Yy EZI({n,d)); and (3)Ve € ey — T : I n,d) € B:c Cl({n,o))

4.3 Generating Benchmarks

GDVRB is defined in Algorithm [I We use existing techniques, e.g. Automated
Combinatorial Testing for Software(ACTS) [34], for generating a CMCA for
constraints specified as logical formulae where factors are variables and levels are
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Algorithm 1: GDVB((ng, ¢), F, I',t) Algorithm

Data: a seed problem (ns, ¢s), a set of factors F' and constraints I', a coverage
goal t

Result: A benchmark of DNN verification problems B

C + GeENCMCA(F, I,t)

B+

for c€ C' do

| B < BUTRANSFORM((ns, ¢s), )
end

RN W N

values for those variables. A CMCA is a set of k-tuples. Each such tuple defines
the target level for each factor for a problem in the generated benchmark. Those
levels are used to transform the given seed verification problem and the resultant
problem is accumulated in the benchmark.

TRANSFORM uses different approaches to transform the seed DNN and the
property. DNN transformation builds on an approach called R4V that automates
architectural transformations to DNNs by scaling (1) the number of neurons in
a fully connected layer, (2) the number of kernels in a convolutional layer, (3)
the input dimension, or (4) the range of values within an input dimension [47].
The first 3 of these require changes to the structure of the DNN and the last
two require changes to the training data, e.g., reshaping, renormalizing. R4V
ensures that the network is well-defined after transformation. TRANSFORM maps
factor-levels to per-layer scale parameters for R4V.

R4V permits the training of a network using network distillation which we
find advantageous for GDVB because: it accelerates the training process, and it
drives training to match the accuracy of the problem DNN to that of n,, which
reduces variation in accuracy across B. We adapt R4V so that after each training
epoch, the learned DNN weights and the validation accuracy is recorded. When
training finishes, we select the weights associated with the highest validation
accuracy. Training is performed using the training data and hyperparameters for
Ns.

Whereas R4V can be used to directly manipulate DNN architecture related
factors, it can only indirectly affect the learned weights. To address this, we adopt
the approach taken throughout the machine learning literature — train a network
on multiple initial seeds and report performance across seeds. Thus, each DNN in
B is trained multiple times, thereby producing a benchmark comprised of s x| B|
verification problems, where is the desired number of seeds.

DNN Transformation Example. Consider this element of the CMCA
described above: ((50%, 100%, 50%), ¢), applied to DAVE-2. TRANSFORM would
compute that 50% of the fully connected layers should be present in the resultant
DNN and randomly select 2 of the 4 layers to scale by 0. The fully-connected
layers are chosen at random, since the layer count factor does not consider layer
ordering. If we consider the case where the layers with 100 and 50 neurons are
dropped, this will eliminate 150 neurons. The other transformation required is to
reduce the number of neurons by half. To do that all remaining layers will be

scaled by 82008+0:5-150 — () 498
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Property transformation builds on a domain-specific language (DSL)
for specifying DNN correctness properties de-
fined by the deep neural network verification N-Network( "N::) ,
framework (DNNV) [48]. Specifications in this s=Parameter (dsf ’ fi:iz ’ 0)
Python-based DSL are parametric and TRANS- __ o oo o erantETh
FORM maps factor-levels to those parameters. x=Image ("path/to/image")
For example, Fig. 2] defines the parametric lo- t=np.load (Parameter ("t",

cal robustness property ¢ that is centered at str,
the image stored at “path/to/image”, has ra- "path/to/zeros.npy"))
dius 0.02, and can be translated and scaled zx=x+t
through parameters t and s, respectively. Forall (x_,
Restricting factors to levels that are sup- ~ Implies(
ported by TRANSFORM and using CMCA algo- (x-e)<x_<(x+e),

rithms that meet Def. [ ensures that GDVB abs (N(x_)-N(x)) <=5

produces a solution that meets Def. [3]
Fig. 2. Parametric Property ¢

4.4 An Instantiation of GDVB

We developed an instance of GDVBE| that supports a set of factors informed by
the results of the study in percentage-based levels for those factors, and a set
of constraints that restrict benchmark problems to those that are non-trivial and
that can be efficiently trained

Our instantiation of GDVB supports the following factors: the total number
of neurons in the DNN (neu), the number of fully-connected layers (fc), the
number of convolutional layers (conv), the dimension of the DNN input (idm),
the size of each DNN input dimension (ids), the scale of the property (scl), and
the translation of the property (trn). We do not support an activation function
factor because only ERAN support non-ReLLU activations and, thus, using them
would render other verifiers inapplicable for large portions generated benchmarks.

We use quintile factor levels, {20%, 40%, 60%, 80%, 100%}, for factors neu,
idm, ids, and scl. To permit the elimination of layer types we extend these levels
with an additional quintile, 0%, for fc and conv. For trn, we select a set of five
translations that shift the property to be centered on a different instance of the
training data; unlike the above levels this level is unordered.

Our instantiation of GDVB exclusion constraints for DAVE-2 are as follows:
(1) fe=0Aconv =0, (2) conv =0 A neu > 20, (3) conv =0 A idm > 80, and
(4) conv = 100 A idm = 20. The first of these requires that some layer be present.
The second and third are related to the blowup in the size of fully-connected
layers that results from dropping all convolutional layers which makes training
difficult; limiting the total number of neurons and the reduction input dimension
mitigates this. The fourth constraint ensures that the input dimension reduction
results in a meaningful network; without it the dimensionality reduction achieved
by sequences of convolutional layers yields an invalid network, i.e., the input to
some layer is smaller than the kernel size.

3 https://github.com/edwardxu0/GDVB
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These constraints were developed iteratively based on feedback from the R4V
tool, which reports when TRANSFORM has specified an invalid DNN, and when
training failed to closely approximate the accuracy of the seed network.

We note that this instance of GDVB is flexible in that it permits the
customization of levels, as we demonstrate in the next section, to generate a
benchmark that focuses on variation in a subset of factors. More generally, GDVB
can easily be extended to support additional factors and levels for which an
instance of TRANSFORM can be defined. We expect that GDVB will evolve in
this way as studies of DNN verifiers are performed.

5 GDVB in Use

In this section we showcase the potential uses of GDVB across a series of artifacts
and verifiers, while highlighting the challenges it helps to systematically address.

5.1 Setup

Our evaluation applies GDVB to two seed networks: MNIST ¢opnypig and DAVE-
2. We selected MNISTconypig because it is one of the largest networks in
ERAN’s evaluation [50]; it includes 4 convolutional layers and 3 fully connected
layers with 48,074 neurons and 1,974,762 parameters. We selected DAVE-2 to
illustrate the application of GDVB to a larger network that has been the subject
of other DNN analysis [42]; it has 5 convolutional layers and 5 fully connected
layers with 82,669 neurons and 2,116,983 parameters.

Table [ lists the 9 \.ferlfiers. WE 5€ Table 1. Verifiers used in GDVB study
lected for our study. This list includes verifier Algorithm
e e o e RLurLx [30] Search-Optimization

A " ¢ PLaNET [20]  Search-Optimization
ations of some verification approaches. p,p [14] Search-Optimization
We use Branch-and-Bound (BAB), as  BABSB [14]  Search-Optimization
well as a variation of Branch-and-Bound Ngurir 59] Optimization
with Smart-Branching (BABSB). Addi- ERANpz[50] Reachability
tionally, we evaluate the ERAN verifier ERANpp[5l] Reachability
with 4 available abstract domains: Deep- ERANgrz[52] Reachability
Zono (ERANp ), DeepPoly (ERANpp), ERANgpHEI]  Reachability
RefineZono (ERANFEz), and RefinePoly (ERANgp).

To evaluate verifier performance, we use the solution-count ranking (SCR)[51],
which counts the number of properties that returned accurate verification results.
Additionally, we measured the penalized average runtime (PAR2)[6], which is
computed as the sum of the verification times for sat and unsat results and twice
time limit for all other verification results.

* We use the version of NEURIFY provided in DNNV[48], which is modified to be
applicable to a wide range of problems, whereas the original version was hard-coded
to a particular verification problem[59].
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MNIST convBig DAVE-2
Verifier SCR | PAR2 SCR | PAR2

ERANpz |11.40+0.49| 18,126.80£488.27 | 7.20+1.94 |24,496.20+1,176.59
ERANpp (21.00£0.89| 9,206.00+806.70 | 18.40+2.15| 17,443.00+£1,344.65
ERANRgz |10.20£0.40| 19,252.60+343.66 | 5.80+2.14 |25,236.60+1,253.90
ERANRgp |12.60£1.02| 16,981.40+£930.71 | 10.20+£1.83 | 22,250.60+1,186.44
NEURIFY |22.00£1.10| 8,636.20+1,008.63| 19.20£2.56| 17,247.80£1,397.05
PrLANET | 7.00£0.63 | 23,145.60+468.18 | 3.40£1.62 | 27,268.60£775.56
BaB 0.204:0.40 | 28,689.80£220.40 | 0.0040.00 28,800.00+£0.00
BABSB | 0.00£0.00 | 28,800.00+0.00 | 0.00+0.00 28,800.00+£0.00
RELuUPLEX| 3.2010.40 | 25,757.80£381.40 | 4.40+1.02 | 26,023.60+635.90

Table 2. Mean & Variance of SCR and PAR2 Scores Across Benchmarks.(The darker
and lighter gray boxes indicate the best and second best results.)

All training and verification took place under CentOS Linux 7. R4V trans-
formation and distillation jobs ran on NVIDIA 1080Ti GPUs. Verification jobs
were limited to 4 hours and ran on 2.3GHz and 2.2GHz Xeon processors with
64GB of memory, for DAVE-2 and MNIST conuBig, respectively.

5.2 Comparing verifiers across a range of challenges

Consider the use case where a researcher is attempting to compare a new verifier
(e.g., a new algorithm, a revised implementation, an extension to an existing
approach) against existing verifiers. As shown earlier, for such comparison to
be meaningful, many factors must be considered and properly explored. Given
a seed network, a property, a set of factors, and a coverage goal, GDVB can
generate a benchmark that helps to reduce bias in conducting such an evaluation.

For this use case we consider seed networks and local robustness properties
similar to those from the ERAN pz study [50] for the MNIST conupig verification
problem and local robustness properties based on those from the NEURIFY
study [59] for the DAVE-2 verification problem. We run an instance of GDVB
using the factors and levels described in §4.4] a coverage strength of 2, and
train 5 versions of each network to account for stochastic weight variation. The
total time to generate and train GDVB (MNISTconvBig, ---) Was 24.3 hours
and the resulting 30 verification problems took 401.8 hours to run across all 9
verifiers. For GDVB (DAVE-2, ...) 44 verification problems were generated
with training and verification times of 158.2 hours and 772.4 hours, respectively.
CMCA generation took less than a minute for both problems. Each problem in
the benchmark must be trained and verified in sequence, but across problems
they can be parallelized. We exploited this to reduce the cost of running the
benchmarks to 4.9 hours for MNIST convpig and 7.9 hours for DAVE-2. We
measured the SCR and PAR2 score for the nine verifiers across the benchmarks.

The results are shown in Table Bl Since the SCR and PAR2 score trends
are the same we depict just SCR in Fig. [3| Boxplots show the SCR scores for
a verifier across all the generated problems; variation in plots arises from the 5
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Fig. 3. SCR Score for Nine Verifiers on GDVB Benchmarks with MNIST convpig (left)
and DAVE-2 (right) seeds

trained versions of the networks for each problem. For each box, the middle line
represent the median, the box-bounds are the first and third quartiles, and the
whiskers represent minimal and maximal values.

The plot for MNIST conypig on the left of Fig. [3 shows that the GDVB
benchmark with the MNIST ¢,,,i; seed is able to identify consider-
able performance variation across verifiers, with ERANpp and NEURIFY
accurately verifying a median of over 20 properties, the rest of the ER AN-variants
verifying between 10 and 13 properties, and the remaining tools verifying between
0 and 8 properties. The results are consistent when we employ DAVE-2 as the
seed network, with marked differences among groups of verifiers although
the generated problems turned out to be more challenging across all verifiers.
ERANpp and NEURIFY, the top performers, can verify less than half of the
generated problems. Verifiers like BAB were unable to verify any problem derived
from DAVE-2 because of the complexity of the seed problem. This point high-
lights the need for benchmarks to evolve with networks that incorporate emerging
technology, and also GDVB’s ability to automatically generate a benchmark
from different seeds to address that need.

Now, understanding the overall performance of a family of verifiers is useful
but it is likely just the first step for a researcher to understand under what
conditions a verifier excels or struggles. When such conditions correspond to
the factors manipulated by GDVB, then they are readily available for further
analysis. One analysis may consist of simply plotting the data across its multiple
dimensions. We do so in the form of radar-charts for DAVE-2 in Fig. [4] and
for MNIST ¢convBig in Fig. m Since the observations we can gather from both
networks are similar, we just discuss DAVE-2 in detail. Each chart includes
six axes representing a factor scaled between 0 and 1. The solid lines link the

5 We do not plot BABSB as its performance was identical to BAB.
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ERAN_DZ ERAN_DP ERAN_RZ ERAN_RP

max conv fc conv fc
median

Planet BaB

conv fc conv fc conv fc
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ids scl

Fig. 4. DAVE-2: Radar plot with maximum (solid) and median (dotted) values

maximum values across factors that were accurately verified while the dotted
lines link the median values across factors.

The shape of the lines in the radar plots clearly show that the verification
problems generated by GDVB reveal unique patterns across the ver-
ifiers. For example, the RELUPLEX plot indicates that it can do well verifying
networks with multiple fully connected (fc) layers but is challenged by larger
networks (neu) and those with convolutional layers (conv). Comparing multiple
charts also reveals some interesting trade-offs. For example, for smaller networks
with just fully connected layers, the medians seem to indicate that RELUPLEX is
better than PLANET. However, when a network incorporates convolutional layers
or a larger number of neurons, PLANET appears to outperform RELUPLEX.

Looking across charts can also pinpoint specific improvements resulting from
tool extensions or revisions. For example, the median line of ERAN gz indicates
that it was not as effective in handling verification problems with a larger number
of layers as its predecessor ERAN pz; the same trend holds for the pair ERANgp
and ERANpp. We note that a more restrictive benchmark that is biased towards
fewer fully connected layers might not reveal such differences.

GDVB offers the opportunity to investigate such differences even further by
generating targeted verification problems for a subset of factors hypothesized to
be culprits of those differences. For example, GDVB could generate additional
verification problems with a number of fully connected layers between 60%
and 80% of the total, while keeping the other factors constant, to refine the
understanding of the differences between ERANgrz and ERANp .

This study illustrates how GDVB benchmarks support the exploration of
verifier performance, lowering the burden on researchers to manually prepare tens
to hundreds of verification problems, and reducing the opportunities for bias.

5.3 GDVB and benchmark requirements R1-R3

As explained in benchmarking in verification seeks to develop benchmarks
that are: diverse; representative of real use cases; and reactive to new technologies.



Systematic Generation of Diverse Benchmarks for DNN Verification 19

ERAN_DZ ERAN_DP ERAN_RZ ERAN_RP
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median
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Fig.5. MNISTconvBig: Radar plot with maximum (solid) and median (dotted) values

The previous sections have provided evidence of how, through its generative
nature, GDVB is reactive to new advances in technology included in the seed
network. We have also seen the high degree of parameterization GDVB offers
including for setting a seed network from which realistic attributes are inherited
in the generated verification problems. In this section we want to illustrate how
GDVB addresses the diversity requirement.

To depict diversity we use the parallel coordinate graph in Fig.[6] Each vertical
line corresponds to a factor, and the markers in each vertical line corresponds
to an explored level. Each verification problem is a polyline that connects the
factors’ levels explored by it. The two sets of lines correspond to the verification
problems included in the DAVE-2 benchmark published with NEURIFY [59],
which is a downsized version of the full DAVE-2 DNN, and the benchmark
produced by GDVB (DAVE-2; ...). Each factor in the plot is normalized by
dividing by the maximum value for the factor.

Fig. [6] shows that the NEURIFY’s DAVE-2 has a large number of neurons,
inputs, and dimensions. Yet, it provides very limited coverage of all the factor
levels that may affect verification performance. In contrast, GDVB provides a
systematic exploration of the factors levels that can affect verifier performance
making it much less biased — especially to the numbers of layers in the verification
problems, and the combination of those factor levels.

The parallel plot for GDVB benchmark with the MNIST conyBig seed (not
shown for space reasons), depicts a similar trend in terms of systematic ex-
ploration of diversity, but since MNIST convBig is simpler than DAVE-2, the
generated benchmark is correspondingly simpler. This points to the need to iden-
tify representative and challenging seeds when parameterizing GDVB. GDVB is
fully capable of accomodating factor levels that exceed 100% of a seed network,
which is a means of pushing verifiers to the limits of their abilities.

We note that excluding factors or levels can yield a systematically generated
benchmark that is unable to characterize differences between verifiers, or worse,
misleads such a characterization by emphasizing certain factors while overlooking
others. For example, not exploring different network sizes or exploring networks
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neu fc conv ids idm

Fig. 6. Diversity explored across factor levels

sizes under 1000 neurons will render similar scores across many DNN verifiers
that are differentiated by more comprehensive benchmarks. In applying GDVB,
we suggest selecting as many factors as we know may matter, starting from a
challenging seed problem, and incrementally refining the levels as needed to focus
benchmark results to differentiate verifier performance.

6 Conclusion

The increasing adoption of DNNs has led to a surge in research on DNN verifica-
tion techniques. Benchmarks to assess these emerging techniques, however, are
costly to develop, often lack in diversity and do not represent the population of
real evolving DNNs. To address this challenge, we have introduced GDVB, a
framework for systematically generating DNN verification problems seeded in
complex, real-world networks, ensuring that benchmarks are derived from real
problems. GDVB is parameterizable by the factors that may influence verification
performance and thereby supports scalable benchmarking. A preliminary study,
using 9 DNN verifiers, demonstrates how GDVB can support the assessment of
the state-of-the-art.

We plan to conduct broader studies of verifier performance using GDVB,
and we encourate other researchers to use and contribute to it. There are many
directions to explore in identifying new factors that influence performance, e.g.,
the impact of quantization and model compression approaches [26]. Work in
this direction promises to deepen the community’s understanding and lead to
advances in DNN verification.
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