
Evaluating Recommender System Stability with Influence-Guided Fuzzing

David Shriver1, Sebastian Elbaum1, Matthew B. Dwyer1, David S. Rosenblum2
1Department of Computer Science, University of Virginia, Charlottesville, VA, USA

2Department of Computer Science, National University of Singapore, Singapore
{dlshriver, selbaum, matthewbdwyer}@virginia.edu, david@comp.nus.edu.sg

Abstract
Recommender systems help users to find products or services
they may like when lacking personal experience or facing an
overwhelming set of choices. Since unstable recommenda-
tions can lead to distrust, loss of profits, and a poor user ex-
perience, it is important to test recommender system stability.
In this work, we present an approach based on inferred mod-
els of influence that underlie recommender systems to guide
the generation of dataset modifications to assess a recom-
mender’s stability. We implement our approach and evaluate
it on several recommender algorithms using the MovieLens
dataset. We find that influence-guided fuzzing can effectively
find small sets of modifications that cause significantly more
instability than random approaches.

Introduction
Recommender systems filter information to help users make
decisions when lacking personal experience or knowl-
edge (Resnick and Varian 1997) or when the set of choices is
overwhelmingly large (Herlocker et al. 2004). We see them
everywhere, from e-commerce sites such as Amazon, news
article recommendation at the New York Times, and movie
recommendation by Netflix, to guides for venture capital
opportunities (Zhao, Zhang, and Wang 2015), safe combi-
nations of pharmaceutical drugs (Chiang et al. 2018), and
collision avoidance actions for aircraft (Julian et al. 2016).

The robustness of these systems—their ability to make
good recommendations in the presence of noise—can have
significant impact on the end goals of both providers and
users (O’Mahony et al. 2004), such as the profitability of
an e-commerce site, or the safety and effectiveness of rec-
ommended drug combinations. In this work, we focus on
a particular dimension of robustness called stability, which
measures how recommendations change when the system is
trained on modified data, regardless of the recommendation
quality. Intuitively, a system lacks stability when there ex-
ist a number of changes to the dataset that can have an ef-
fect on the recommendations that is disproportionate to the
amount of change. The lack of stability is problematic in
that it causes recommendation inconsistencies that can lead
to loss of user trust and limits system adoption (Adomavi-
cius and Zhang 2012).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Determining the stability of a system, however, is ex-
tremely challenging, due in part to the size of the input
space that needs to be explored. As an example, the dataset
we use later in the paper has 943 users, 1682 items, and
100,000 ratings on a scale from 1 to 5. A naı̈ve stability as-
sessment approach that simply adds a single random rating
to that dataset would likely overestimate the system stabil-
ity since finding one addition among the 8 million possible
(943 users × 1682 items × 5 ratings) that can cause insta-
bility is very unlikely. Similarly, an exhaustive search for
instability-inducing modifications seems infeasible, espe-
cially when considering multiple modifications (i.e., adding
k new ratings to our dataset means exploring a space of at
least 10(6∗k) potential modifications) or when considering
datasets that can contain hundreds of millions of data points.
Furthermore, even if generating all modifications was fea-
sible, the system must then be retrained on the modified
dataset, which is often an even more expensive process.

Our approach to this problem is to exploit the assump-
tions underlying the design of recommender algorithms as
to how the relationships among items and users influence
recommendation behavior. For instance, a user-based rec-
ommender algorithm assumes that influence between users
is important and therefore employs similarity measures be-
tween users in order to determine influence. Unfortunately,
these influence relationships are encoded by the training pro-
cess in complex, internal data structures that are typically
difficult to access and interpret. Nevertheless, we can infer
characteristics of the influence relationships learned by the
system by analyzing the recommendations it produces and
the ratings it was trained on. For instance, we can estimate
the influence of a user based on the number of items rated
by that user that are recommended to other users.

Based on this insight, our approach first infers a model
of influence underlying a recommender system, and then it
performs fuzzing on the training dataset in order to assess
the system’s stability. Fuzzing is a widely-used automated
software testing technique that generates invalid, unexpected
or other directed random inputs to cost-effectively test the
stability a system (Miller, Fredriksen, and So 1990)1.

As part of its output, the approach includes examples of
changes and types of changes to the dataset that cause in-

1A recent survey on fuzzing can be found at (Liang et al. 2018).

stability. These examples can then be used by developers
to improve the design of the recommender algorithm, ad-
just its parameters, or even discard and replace the algo-
rithm entirely, in an effort to meet the stability requirements
for a given dataset. Stability results also can inform model
training tasks, such as when additional preprocessing of the
data is needed, when regularization needs to be modified, or
when to perform retraining during deployment.

Our overall contributions are: (1) We approximate influ-
ence relationships learned by recommender systems from
the recommendations they produce and their training data.
(2) We use these models for heuristic-based, influence-
guided fuzzing of recommender system stability, to search
for dataset modifications having a disproportionate effect on
computed recommendations. (3) We evaluate our approach
on several recommender algorithms with the MovieLens
dataset. We find that our influence-guided fuzzing heuristics
are much more effective than randomly generating modifi-
cations. For instance, for one recommender system tested,
10 rating modifications generated with our influence-guided
heuristic caused 44% of users to have their top-ranked item
removed from their recommendations after retraining, a
40000x increase over random.

Related Work
O’Mahony et al. describe two aspects to robustness, ac-
curacy and stability (O’Mahony et al. 2004). Accuracy, in
regard to robustness, is a measure of the recommendation
quality after changes are made to the dataset, while stability
is a measure of how different the recommendations are after
a change is made. Gunawardana and Shani consider robust-
ness to be “the stability of the recommendation in the pres-
ence of fake information” (Gunawardana and Shani 2015).
Adomavicius and Zhang take a slightly different view of ro-
bustness and stability, defining stability as the consistency
of recommendations over some period of time under the
assumption that any new ratings added to the dataset com-
pletely agree with the prior recommendations (Adomavicius
and Zhang 2010; 2012). Using this definition of stability,
they find that the stability of a recommender system does
not necessarily correlate with the accuracy of the system.
In this work, we define stability as the consistency of rec-
ommendations, given any small set of rating modifications,
and we relax the assumption of Adomavicius and Zhang that
new ratings must align with the past.

In prior work, recommender system robustness was com-
monly evaluated in the context of attacking recommender
systems. Shilling attacks, or profile-injection attacks, add
user profiles to a recommender system with crafted sets of
item ratings in order to increase or decrease the position of
some item in the recommendations of all users (O’Mahony
et al. 2004; Lam and Riedl 2004). Gunes et al. provide
a comprehensive survey on shilling attacks against recom-
mender systems (Gunes et al. 2014). Our approach differs
from adversarial and shilling attacks in a couple significant
ways. First, our fuzzing approach automatically infers inu-
ence models from the execution of the recommender sys-
tem. These models aim to approximate portions of the train-
ing dataset that are driving most recommendations. Second,

Data, D’
Algorithm, A

Recommender System

Fuzzing

Data, D
Algorithm, A

Recommender System

Influence
Modelling

Recommendations, R

Recommendations, R’

Diffing Oracle
Stable
UnstableModels

Our Approach

Rating
Modifications

Figure 1: Diagram of our approach for generating modified
datasets based on inferred influence models.

our fuzzing approach uses those models to generate rating
modifications, which are much smaller than adding whole
new profiles, users, or items to a dataset. Whereas shilling
attacks add new user profiles to promote or demote targeted
items, our approach generates small sets of rating modifica-
tions for existing users and items to provide a general assess-
ment of the stability of a recommender system. Additionally,
because shilling attacks add new users to a system, they re-
quire adding many ratings for each of those new users. For
example Lam and Riedl introduce between 25 and 100 users
with 3404 ratings each to a dataset of almost 1,000,000 rat-
ings (a percent change of between 8% and 34%) (Lam and
Riedl 2004). In contrast, our goal is to identify small sets
of modifications (under 1% change) that cause significant
change to the recommendations produced by the system.

Approach
In this section we present our approach to assessing the sta-
bility of recommender systems by fuzzing the dataset used to
train the recommender. A diagram of our approach is shown
in Figure 1. A recommender system consists of an algorithm,
A and a dataset, D. The algorithm uses the dataset to com-
pute a model of user preferences. The recommender system
employs the learned model to compute recommendations for
users of the system. Our approach infers an influence model
from a dataset D and a set of recommendations R. The in-
ferred influence model is then used for fuzzing D to pro-
duce a new dataset D′. Using the modified dataset we train
a new recommender system and generate recommendations
R′. The recommendations R and R′ are then compared us-
ing a differential oracle to assess the instability of the origi-
nal recommender system.

To simplify our presentation, we begin by defining recom-
mender systems in terms of users, items, ratings, and rank-
ings. Then we describe how to approximate recommender

Table 1: Influence Model Functions

Name Definition

User IU (u) =
|{u′ | rank(i, u′) 6= ⊥∧rating(u, i)}|

Item II(i) =
|{u | rank(i′, u) 6= ⊥∧ rating(u, i)}|

Attribute IAI (a) = |{(u, i) | rank(i, u) 6= ⊥
∧ a ∈ attr(i)}|

Rating IR(r) = |{i | rank(i, u) 6= ⊥
∧ |r − avg{rating(u′, i)}| ≤ ε}|

systems with inferred models of influence. Next, we explain
how we can use these models for influence-guided fuzzing
of modifications to a dataset. Finally, we define differential
oracles for recommender stability, and discuss the assump-
tions made by our approach.

Defining Recommender Systems
Let U be a finite set of users, I a finite set of Items, and
R a possibly infinite, ordered set of rating values. Without
loss of generality, we assume that R ⊂ Z>0 (within some
interval [l, h]).

This framework extends to recommender systems in gen-
eral. For instance, in a system that recommends pharma-
ceutical drugs that are safe to take with a given prescrip-
tion (Chiang et al. 2018), the items to recommend are drugs,
the user is a prescription, and the ratings encode whether the
prescription included a drug.

A dataset D defines the partial function rating : U ×I →
R that captures how users rate items, with rating(u, i) = ⊥
if u has not rated i. In addition to defining rating , D char-
acterizes each u ∈ U by attributes drawn from the set AU ,
and each i ∈ I by attributes drawn from the set AI through
functions attr : U → 2AU and attr : I → 2AI , respectively.
A user or item may be characterized by multiple attributes.

Given D and a parameter k for computing top-k rank-
ings, a recommender algorithm Q computes a partial func-
tion rankk,Q : I × U → [1, k] for k ≤ |I|, where
rankk,Q(i, u) = ⊥ if item i is not ranked for user u.

For every u ∈ U there are a number of ranked
items, ku ≤ k, and the projection of rank onto users,
rankk,Q(u) : Iku

→ [1, ku], is a bijection, where Iku
⊆ I,

|Iku
| = ku.

In what follows, we drop the subscript Q from rankk,Q

since Q is typically apparent from the context, and we drop
the subscript k since k is typically a parameter to Q.

Inferring Influence
Recommender systems generate recommendations based on
some notion of influence between aspects of the dataset,
such as users (U), items (I), or attributes (AI or AU). For
instance a user-based algorithm computes users that are in-
fluential to a given user, based on the similarity of ratings be-
tween pairs of users. Users with high similarity in their rat-
ings are considered more influential to each other than users

with low similarity in their ratings. In an item-based recom-
mender algorithm, influence occurs between items, and is
computed based on the similarity of ratings between items.

Because influence is used to produce recommendations,
we conjecture that we can approximate the influence of var-
ious aspects (users, items, ratings, or attributes) of a dataset
for a recommender system, based on the data used to train
the recommender and its recommendations. By observing
the relationship between some aspect in the dataset and some
aspect in the recommendations, such as whether user u rated
an item that is recommended to user u′, we can build an
approximate model of the overall influence. In general, we
approximate influence scores with a function:

IA : An → R, where A ∈ {U , I,R,AI ,AU} (1)

This function maps aspects of the dataset to a real value
representation of the influence of that aspect. In this work,
we focus on influence functions over single types of aspect
(n = 1), however richer forms of influence are possible.
Using the computed influence scores, we can approximate
the internal influence model of a recommender system as a
list of aspects and their associated inferred influence score.

In this work we present four models of influence, which
are shown in Table 1. These models of influence capture the
four major aspects of a recommender system: users, items,
ratings, and attributes. The first column of Table 1 gives a
short descriptive name to the influence model, and the sec-
ond provides a definition in terms of the recommender sys-
tem elements defined earlier. The superscript of the influ-
ence function signifies the type of aspect over which this
influence applies. The influence function computes a score
for an aspect based on the dataset and the rankings produced
by the recommender system of interest. We describe each of
these models in more detail below.

User influence measures the impact of a user u on all
other users. A user, u is considered to have impacted another
user u′ if user u has provided a rating for an item appearing
in the top-k items for user u′. This model of influence cap-
tures the intuition that if a user affects the recommendations
of many users, then that user likely has high influence.

Item influence measures the impact that an item i has on
recommendations, by counting the number of users who are
recommended at least one item, and have rated item i. This
model of influence captures the intuition that items rated by
many users are likely to be more influential.

Attribute influence measures the impact of an item at-
tribute on the recommendation of items with that attribute.
An attribute, a is considered to be influential if many rec-
ommended items have attribute a. This model captures the
intuition that if many recommended items have a similar at-
tribute, then that attribute must be significant.

Rating influence measures the impact of rating values on
recommendation. A rating value r is considered to be more
impactful if more recommended items have an average rat-
ing within some value ε of r. This model captures the in-
tuition that if many recommended items have similar aver-
age rating values, then that rating value is more influential.
In other words, items with average ratings near r are more
likely to be recommended if r has high influence. While, the

notion of influence for users, items, and attributes is intu-
itive, the notion of rating influence is less intuitive. However,
we see in Section that it can be unusually effective.

Influence-Guided Fuzzing
Using influence models, such as those defined above, we can
define fuzzing heuristics which produce a set of modifica-
tions to the original dataset that are likely to cause a recom-
mender system to exhibit unstable behavior.

We allow three basic types of dataset modifications: add,
remove, and change. Add inserts a new rating to the dataset
for a user u, item i, and value r if no rating value existed
for u and i in the original dataset. Remove deletes an exist-
ing rating for a user u and item i from the data set. Change
deletes an existing rating for a user u and item i and inserts
a new rating with value r for user u and item i.

We define a modification fuzzing heuristic as a function:

M : I ×D × Z→ 2M (2)

M ∈ {A,R,C}, where A is a set of additions, R a set
of removals, and C a set of changes. As per Equation 2, a
heuristic function takes an influence function, a dataset, and
a number of modifications to be made, and outputs a set of
additions, a set of removals, and a set of changes, or some
subset of these.

We define a small sample of possible fuzzing heuristics,
shown in the top section of Table 2. These heuristics were
chosen by keeping the modification type constant (as the
Add modification type) and varying the influence type, and
by keeping the influence type constant (as user influence)
and varying the type of modification. This is not a complete
listing of possible heuristics but is designed to cover a va-
riety of influence models, given the limited space available.
We discuss the intuition for each of these heuristics below.
Each row of Table 2 is a fuzzing heuristic. The first column
of each row provides a short name which we use as an iden-
tifier, and the second column provides a description of the
heuristic where the bolded and italicized words specify the
modification and influence types, respectively.

The influence-guided fuzzing heuristics defined here are
given three letter names based on how they operate. The
first letter is based on the type of modification they produce,
where A is for add, C is for change, and R is for remove
modifications. The second letter is the area of the influence
model they select aspects from. An M means that the heuris-
tic chooses the most influential aspect and an L means it
chooses the least influential. The third letter specifies the
type of influence used by the heuristic. User influence is
specified by a U, item influence is an I, attribute influence
is an A, and rating influence is an R.
AMU. The AMU fuzzing heuristic adds random ratings to

the user with the highest influence score and is defined as:

AMU : IU ×D × Z→ 2A (3)

Items are selected from the set of items not yet rated by
that user and both items and rating values are selected uni-
formly at random. The intuition behind this heuristic is that
by adding ratings to the highest influence user, we may be

Table 2: Fuzzing Heuristics

Name Description

AMU Add a rating with random value to a random
item for the most influential user.

RMU Remove a rating from a random item for the
most influential user.

CMU Change the rating of a random item to the low
value for the most influential user.

ALI Add a rating with a random value to the least
influential item.

AMR Add a random rating value to an item with an
average rating near the most influential aver-
age rating.

AMA Add a rating with low value to a random user
for an item with the most attribute influence.

ARAND Add ratings to random users and items.
RRAND Remove random ratings.
CRAND Change random ratings to the low value.

able to cause a new item to be recommended to many other
users, or cause a previously recommended item to stop being
recommended for many users.
RMU. The RMU fuzzing heuristic removes random ratings

from the most influential user and is defined as:

RMU : IU ×D × Z→ 2R (4)

Items are selected uniformly at random from the set of items
rated by that user. The intuition behind this heuristic is that
by removing ratings from the highest influence user, that
user can lose influence, causing the recommendations of
other users to change.
CMU. The CMU fuzzing heuristic changes random ratings

by the user with the highest influence score to have the low-
est possible rating value. This heuristic is defined as:

CMU : IU ×D × Z→ 2C (5)

Items are selected uniformly at random from the set of items
rated by that user. The intuition behind this heuristic is that
by changing ratings of the highest influence user, we may
cause a recommended item to no longer be recommended.
ALI. The ALI fuzzing heuristic adds random ratings to

the item with the lowest influence score. We define the func-
tion for this heuristic as:

ALI : II ×D × Z→ 2A (6)

Users are selected from the set of users that have not rated
the least influential item. Both users and rating values are
selected uniformly at random. The intuition is that adding
ratings to the least influential item may cause it to become
influential, and cause recommendations to change.
AMR. The AMR fuzzing heuristic adds new random ratings

to items with average rating values near the most influential
rating value. We define the function for this heuristic as:

AMR : IR ×D × Z→ 2A (7)

Items are selected uniformly at random from the set of items
with an average rating within 0.05 of the most influential
rating. This selects items very close to the influential rat-
ing. We experimented with several values of ε, and we chose
0.05 as the value that generally produced the most instabil-
ity. Users are selected uniformly at random from the set of
users that have not rated the selected item. The rating value
to add is selected uniformly at random. The intuition behind
this heuristic is that by adding random ratings to items with
an influential average rating, we can move the average away
from the influential rating value to reduce the likelihood that
the item will be recommended.
AMA. The AMA heuristic adds low valued ratings to items

with the highest aggregate attribute influence and is defined
as:

AMA : IAI ×D × Z→ 2A (8)
Because items can have multiple attributes, this heuristic
aggregates the influence scores of all attributes of an item
by summing all of their influence scores. We use a slightly
modified attribute influence function in order to negatively
weight low influence attributes:

IAI
2 (a) = 2 ∗ |{a′|IAI (a) ≥ IAI (a′)}| − |AI | (9)

The item with the highest aggregate attribute influence is se-
lected for modification. Users are selected uniformly at ran-
dom from the users who have not rated the selected item.
The intuition behind this heuristic is that by adding low rat-
ings to items with many highly influential attributes, we can
decrease the influence of those attributes, causing items with
those attributes to not be recommended.

Differential Stability Oracles
To test the stability of recommender systems, we define or-
acles as Boolean predicates of the form:

f{d(rank(u), rank′(u)) | u ∈ U} < δ (10)
This predicate ensures that a function f applied to the set
of distances between users’ rankings using the original and
modified datasets is below a specified threshold δ. In this
work, we consider f to be a function that computes the av-
erage distance. We can compute the distance between rank-
ings using a variety of metrics, depending on which types of
change we wish to be sensitive to.

Many possible metrics may be used to compute the dis-
tance between rankings, which cover a range of important
aspects of change, including the order of the top-k rankings,
the inclusion of items in the top-k recommendations, and the
exclusion of important items in a user’s top-k.

In this work, we introduce the TopOut measure to
quantify significant ranking changes. This measure checks
whether the top item in the unmodified ranked list has
dropped out of the top-k rankings when using the modified
dataset. We assume that the top ranked item is likely to be
one of the most difficult to change. Therefore, if this item
is not in the ranked list after modifications are added to the
dataset, then the recommendations should be considered to
have significantly changed. We define this measure as:

TopOut(Ru, R
′
u) =

{
1 r1 6∈ R′u
0 otherwise

(11)

Ru is the set of items recommended to user u using the
recommender trained on the original dataset and R′u is the
set of items recommended to user u after modifications are
made to the dataset. The item r1 is the top-ranked item
(rank(r1, u) = 1) in the ranked list of u. This metric is sen-
sitive only to the top ranked item for a user, which generally
has the highest likelihood of being preferred by the user. To
change the value of this metric, the top item in the original
ranking must not be included in the new top-k ranked list.

Practical Considerations and Usage
For this approach to be applicable, certain preconditions
must be met. First, the developer must have read and write
access to the full dataset that was used to train the recom-
mender system under test. This is a reasonable as testing will
generally be performed by a developer or a dedicated tester
of the system, and will thus have access to this data. Second,
we assume that additions, removals, or changes are realistic
modifications that can occur to a dataset which is the case
for most recommendation systems that evolve over time.
Third, in defining differential oracles for recommender sta-
bility, we assume that identifying a threshold of acceptable
instability δ is possible either by using standard or histori-
cal measures. While choosing a threshold value is domain-,
application-, and even dataset-dependent, an empirical pro-
cess can be used to find appropriate values. For instance,
a space of threshold values for the initial system can be
explored to help developers set expectations, and then that
baseline threshold can be used as the system or the dataset
evolves.

When those preconditions are met, the approach can pro-
vide not only better stability estimates than existing ap-
proaches but also concrete dataset changes that may cause
significant instability. Historical stability estimates can then
be used by developers to assess the evolution of their recom-
mender from a robustness perspective and to pinpoint depar-
tures from established trends. Developers can also use the
concrete dataset changes to determine how best to adjust the
existing algorithm underlying the recommendation system
to make it more robust to variations in the dataset. Last, the
stability estimates and the dataset changes can guide data
cleansing procedures (by for example increasing or decreas-
ing the impact of certain records or aspects) and assist in the
definition of data retraining policies after deployment.

Study
We carried out a study to explore the cost-effectiveness of
our fuzzing heuristics, and we also explore how the type of
influence and type of modifications used by a fuzzing heuris-
tic affects its ability to find instability-inducing modifica-
tions. More specifically, we answer the following questions:

RQ1: How effective and efficient are the different influ-
ence models in guiding generation of instability-inducing
modifications?

RQ2: How can we fuzz a recommender system if the al-
gorithm is a black box and the type of underlying influence
is unknown?

Study Design
We evaluated our approach to fuzzing recommender systems
by applying the selected influence-guided fuzzing heuristics
to several recommender systems using a variety of recom-
mender algorithms and a movie ratings dataset. We discuss
these choices in more detail below.

We evaluated the fuzzing heuristics for 3 sizes of modifi-
cation set: 1, 10, and 100. These sizes correspond to changes
of 0.001, 0.01, and 0.1 percent of the dataset respectively
and were chosen to be much smaller than the size of the
dataset. With less than 0.1% of the ratings being modified,
we would expect the recommendations to exhibit propor-
tionally small amounts of change. For each heuristic, size,
and recommender system (described next), we generated
100 modification sets. We then trained each recommender
on the modified dataset and generate Top-10 recommenda-
tions for every user. The log of the average TopOut metric
over the 100 generated modification sets are plotted in Fig-
ure 2.

Recommender Algorithms For this study we selected
four recommendation algorithms. The algorithms were cho-
sen to represent a variety of recommender techniques rang-
ing from memory-based to model-based, and from content-
based to collaborative filtering. An additional criteria that
guided our algorithm selection was that a candidate algo-
rithm had to work with the MovieLens dataset (Harper and
Konstan 2015), either because it was a part of the Lenskit
framework or because its adaptation to that framework re-
quired only minor data wrangling. We describe each of the
four chosen algorithms below.

User-User. The User-User algorithm is a memory-based
collaborative filtering algorithm introduced by the Grou-
pLens project (Resnick et al. 1994). The algorithm computes
user similarity scores based on user rating vectors. In this
work, we use the implementation of User-User provided by
the Lenskit framework (Ekstrand et al. 2011), which com-
putes user similarity using vector cosine similarity (Breese,
Heckerman, and Kadie 1998).

Item-Item. The Item-Item algorithm is a model-based col-
laborative filtering algorithm. Similarity scores are precom-
puted for all pairs of item rating vectors. The predicted value
of an item is estimated by aggregating the ratings of the most
similar items (Sarwar et al. 2001; Deshpande and Karypis
2004). We again use the Item-Item implementation provided
by the Lenskit framework (Ekstrand et al. 2011).

FunkSVD. FunkSVD is a model-based collaborative filter-
ing algorithm that uses stochastic gradient descent to learn
a matrix factorization (Funk 2006). In this work, we use the
implementation of FunkSVD provided by the Lenskit frame-
work (Ekstrand et al. 2011), which learns 25 latent features.

LightFM. LightFM is a hybrid recommender algorithm
that uses both ratings and item attributes to build a recom-
mender model (Kula 2015). In our study, we use the Python
implementation of the algorithm provided by its author2. It
is the only algorithm of the four that explicitly uses item
attributes when building a recommender model. Using the

2https://github.com/lyst/lightfm

MovieLens dataset, we provide the genres as item attributes.

MovieLens 100k Dataset We use the dataset released in
1998 from the MovieLens recommendation system. The
dataset is available as a group of tab separated files, con-
taining 100 thousand integer ratings (from 1 to 5) col-
lected from 943 users over a period of 8 months on 1682
movies. Each user has rated at least 20 items. More details
about the data collection process and the dataset itself are
available at https://grouplens.org/datasets/
movielens/100k/ (Harper and Konstan 2015).

Treatments To study the effectiveness of influence-guided
fuzzing, we will compare the defined heuristics from Ta-
ble 2 against three random baselines: ARAND, RRAND, and
CRAND. The ARAND heuristic adds new ratings to the dataset
by randomly selecting users, items, and rating values. The
RRAND heuristic removes ratings from the dataset by ran-
domly selecting users, items, and rating values. The CRAND
heuristic randomly changes ratings in the dataset to have the
lowest rating value by randomly selecting users and items.
These baselines were chosen to control for the effect of the
influence model on the user or item choice. By comparing
the influence-based heuristics to the random baseline of the
same modification type (e.g., CRAND and CMU), we can eval-
uate the effectiveness of using influence models to guide
fuzzing of recommender systems.

Differential Oracle Our evaluation reports the results
from using the TopOut distance metric (d = TopOut), and
we use a differential oracle that computes the average dis-
tance over all users (f = avg).

Methodology To evaluate efficiency, we measure how
long it takes each heuristic to generate a modification. We
generate 100 modification sets of size 1, 10, and 100 for each
heuristic and report the average time to generate a modifica-
tion set of each size.

To compare the effectiveness of influence-guided fuzzing
heuristics to random fuzzing, we compute the average
TopOut instability across 100 generated modification sets
for each configuration of recommender and modification set
size. We explored modification sets of size 1, 10, and 100,
which are small compared to the original dataset. Chang-
ing 100 ratings would change only 0.1% of the dataset used
in this study. We arbitrarily chose to stop with a maximum
modification set size of 100. We then compute the ratio of
the TopOut instability induced by each heuristic to the in-
stability induced by the random fuzzing heuristic of the same
modification type. A ratio greater than 1.0 indicates that
a heuristic outperforms random. A value of 10 means that
influence-guided fuzzing caused 10 times more instability
than random.

Threats to Validity The recommendations produced by a
system are dependent on both the recommender algorithm
as well as the dataset used to train the system. Because we
only evaluate our approach with a single dataset, our results
may not generalize to other datasets. That said, the approach
is general, and this dataset is commonly used and includes
user and item attributes for content-based recommendation.

am
u al
i

am
r

am
a

rm
u

cm
u

am
u al
i

am
r

am
a

rm
u

cm
u

am
u al
i

am
r

am
a

rm
u

cm
u

am
u al
i

am
r

am
a

rm
u

cm
u

Heuristic

0.0
0.01

0.1
1.0

10.0
100.0

1000.0
10000.0

100000.0
*

To
pO

ut
 In

st
ab

ilit
y

Ra
tio

 (l
og

)

User-User Item-Item FunkSVD LightSVM

1
10
100

Figure 2: Ratio of mean TopOut instability for each influence-guided fuzzing heuristic compared to the mean TopOut insta-
bility for ARAND using sets of 1, 10, and 100 Add-type modifications. Heuristics that perform significantly better or worse than
the baseline (with p < 0.05), are presented in color.

In this work we look at only a small subset of the possi-
ble influence functions and modification fuzzing heuristics.
There are many other heuristics that can generate instability-
inducing modifications or better approximation functions for
computing influence. We do show that heuristics can be used
to generate instability-inducing modifications more effec-
tively than random methods.

There are many possible metrics for computing the dis-
tance between recommendations. In this work, we only re-
port the results of TopOut since the results of using the
Jaccard and AOD measures were similar.

RQ1:Effectiveness and Efficiency of Fuzzing
Effectiveness of Heuristics Overall, influence-guided
fuzzing is effective at generating smaller sets of modifica-
tions that induce higher amounts of instability than random,
succeeding in 3 of 4 recommendation algorithms, often pro-
viding order of magnitude improvements.

Figure 2 shows the ratio of the TopOut instability for
each influence-guided fuzzing heuristic, compared to its cor-
responding random baseline. The x-axis contains the heuris-
tic and recommender pairs, and the y-axis represents the
ratio on a log scale. In cases where the baseline caused a
TopOut instability of 0.0, the ratio could not be computed,
so we plot these points at the value ∗ on the highest value of
the y-axis. We also perform a statistical pairwise comparison
of the instability induced by each influence-guided fuzzing
heuristic to the instability induced by ARAND using Welch’s
t-test. Heuristics that perform significantly better or worse
than the baseline (with p < 0.05), are presented in color in
Figure 2.

For the User-User recommender system, 3 of the
influence-guided fuzzing heuristics perform significantly
better than random, for at least one size of modification
set. In fact, for modification sets of size 1, the AMR heuris-
tic induced instability 128x better than random. Unlike
User-User, single modifications were not as effective on

FunkSVD, and only performed better than random for AMR.
However, sets of 10 and 100 modifications performed signif-
icantly better than random when using ALI and AMR. When
generating sets of 10 modifications, AMR induced instabil-
ity over 40000x greater than ARAND. With LightFM, 3 of
our influence-guided heuristics (AMU, ALI, and AMR) per-
formed similarly to random. However, AMA performed sig-
nificantly better than the random baseline for sets of 10 and
100 modifications, causing 1.3x and 3.2x greater instabil-
ity, respectively. While, Add-type modifications tended to be
ineffective for Item-Item, the RMU and CMU heuristics out-
performed their corresponding baselines by 6.3x and 13.4x
greater instability, respectively.

Fitting of Influence Model The effectiveness of a given
influence-guided fuzzing heuristic depends on how closely
the inferred influence model used by the heuristic approxi-
mates the actual influences used by the recommender algo-
rithm. For instance, in Figure 2, we see that the AMA heuris-
tic is not effective at fuzzing instability-inducing modifica-
tions. This is likely because AMA uses an inferred attribute
influence model, while the three algorithms for which it does
not perform well do not rely on any attribute data. However,
for a recommender that does rely on item attribute infor-
mation, such as LightFM, the AMA heuristic is effective at
generating instability-inducing modifications.

Similarly, the rating influence based AMR heuristic is un-
usually effective at causing significant changes to recom-
mendations for the User-User and FunkSVD recommenders.
We believe this is because influential rating values for these
recommenders are on the extreme ends of the rating scale.
The most influential rating value for the User-User rec-
ommender is 1.0, while the influential rating value for the
FunkSVD recommender is 5.0. For the other two recom-
menders, for which AMR performed poorly, the most influ-
ential rating value was closer to the middle of the scale.

Effectiveness by Modification Type For three of the rec-
ommender systems explored in this work, Add-type mod-

Table 3: Time (in seconds) to generate a modification set.

Heuristic / Set Size 1 10 100

ARAND 0.539 0.608 2.020
AMU 0.600 0.673 1.692
ALI 0.607 0.801 1.809
AMR 0.458 0.580 1.582
AMA 3.126 3.053 3.753

ifications were the most effective at influencing change.
For these recommenders, at least one heuristic performed
significantly better than random for modification sets of
size 10 and 100. For example, the AMA heuristic is ef-
fective at fuzzing instability-inducing modification sets for
the LightFM recommender. For both the User-User and
FunkSVD algorithm, the AMR heuristic is effective at gen-
erating single modifications that induce significant change
in the recommendations. However, Add-type modifications
were not effective at inducing instability for the Item-Item
recommender.

Remove-type modifications were more effective than ran-
dom for sets of 100 modifications for User-User, Item-Item,
and FunkSVD. This modification type was also effective for
the Item-Item recommender when fuzzing sets of 10 modi-
fications.

Overall, Change-type modifications affected the fewest
recommender systems, but when they were effective, they
caused large amounts of change. Change-type modifica-
tions were only effective on two algorithms, Item-Item and
FunkSVD, and only for sets of 100 modifications. However,
they were able to produce higher levels of instability in the
Item-Item recommender than any other modification type.
We conjecture that this is because the value of ratings in
these systems is more influential than the relationships be-
tween users or items.

Efficiency of Heuristics We briefly evaluate the efficiency
of each heuristic to generate a set of modifications. The
mean time (in seconds) over the course of 100 trials for each
Add-type heuristic and set size are reported in Table 3. The
cost of fuzzing heuristics for Change and Remove modifica-
tions were similar.

The time to generate modification sets for random and
influence-based fuzzing heuristics are comparable for AMU,
ALI, and AMR, and within a factor of 6 in the worst case
for AMA3. But even in the worse case, the timing are practi-
cally the same when considering the time it takes to train the
recommender system on the new data (over 2 minutes when
training on the small MovieLens 100k dataset).

RQ2: How effective is fuzzing in the absence of
algorithm information?
We explore whether influence-guided fuzzing is an effective
technique for testing stability when the recommender algo-

3AMA takes longer due to the repeated aggregation of the influ-
ence of multiple attributes for every item (see Equation 9).

Table 4: Mean TopOut instability for APORTFOLIO

Configuration ARAND APORTFOLIO
Recommender,M

User-User,10 0.002969 0.035599
User-User,100 0.031294 0.257794
Item-Item,10 0.002375 0.000244
Item-Item,100 0.026681 0.008653

FunkSVD,10 0.000011 0.130721
FunkSVD,100 0.053446 0.768982
LightFM,10 0.011474 0.012450
LightFM,100 0.010933 0.017678

rithm under test is a black box, and the sorts of influence
used by the system are unknown.

To accomplish that, we introduce a portfolio approach to
generating modifications. We assume a budget of n modifi-
cations and a user specified portfolio of m influence-guided
fuzzing heuristics. For each modification in the modification
set, we use a round robin approach to select one of the m
fuzzing heuristics to generate the modification.

We evaluate this approach with a portfolio of the four
influence-guided fuzzing heuristics studied previously. We
will call this hybrid heuristic APORTFOLIO. Using budgets
of n = 10 and n = 100, we compare the effectiveness
of APORTFOLIO to ARAND using each of the four recom-
menders studied above.4 The average TopOut instability for
APORTFOLIO is reported in Table 4. Values in this table are
bold if they are significantly better than random.

For the User-User, FunkSVD, and LightFM recom-
menders, the portfolio approach is able to find modification
sets that cause more instability than ARAND. APORTFOLIO
was not effective for the Item-Item recommender system.
This is likely because none of the Add-type heuristics per-
formed well on the Item-Item recommender. Overall, us-
ing a portfolio of influence-guided fuzzing heuristics is ef-
fective at generating modification sets that cause significant
changes in recommendations.

Conclusions and Future Work
We present an approach that uses influence-guided fuzzing
to test the stability of recommender systems. We build on
the insight that influence models can be inferred from the
recommendations produced by a recommender system and
the dataset used to train that system. We define a sample of
fuzzing heuristics that use inferred influence models to gen-
erate modifications to the original dataset that induce insta-
bility in the recommendations. To test instability we define
a test oracle that uses a threshold of acceptable instability,
measured as the distance between users’ recommendations.
Our study shows that influence-guided fuzzing is effective
at finding small sets of modifications that cause significantly
more instability than random approaches. In future work,

4We do not use n = 1 for this approach because it is equivalent
to selecting a single heuristic.

we will perform a more exhaustive search of this space to
identify what features of heuristics and influence models are
most effective. For example, using hybrid forms of influence
over multiple types of aspects in the dataset, and fuzzing
heuristics that take advantage of multiple types of influence.

Acknowledgments
This work has been supported in part by National Sci-
ence Foundation awards #1526652 and #1617916, and by
A*STAR SERC PSF grant 152120008.

References
Adomavicius, G., and Zhang, J. 2010. On the stability of
recommendation algorithms. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys ’10,
47–54. New York, NY, USA: ACM.
Adomavicius, G., and Zhang, J. 2012. Stability of recom-
mendation algorithms. ACM Trans. Inf. Syst. 30(4):23:1–
23:31.
Breese, J. S.; Heckerman, D.; and Kadie, C. 1998. Empirical
analysis of predictive algorithms for collaborative filtering.
In Proceedings of the Fourteenth Conference on Uncertainty
in Artificial Intelligence, 43–52. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Chiang, W.; Shen, L.; Li, L.; and Ning, X. 2018.
Drug recommendation toward safe polypharmacy. CoRR
abs/1803.03185.
Deshpande, M., and Karypis, G. 2004. Item-based top-n rec-
ommendation algorithms. ACM Trans. Inf. Syst. 22(1):143–
177.
Ekstrand, M. D.; Ludwig, M.; Konstan, J. A.; and Riedl, J. T.
2011. Rethinking the recommender research ecosystem: Re-
producibility, openness, and lenskit. In Proceedings of the
Fifth ACM Conference on Recommender Systems, 133–140.
New York, NY, USA: ACM.
Funk, S. 2006. Netflix update: Try this at home.
Gunawardana, A., and Shani, G. 2015. Evaluating Recom-
mender Systems. Boston, MA: Springer US. 265–308.
Gunes, I.; Kaleli, C.; Bilge, A.; and Polat, H. 2014. Shilling
attacks against recommender systems: a comprehensive sur-
vey. Artificial Intelligence Review 42(4):767–799.
Harper, F. M., and Konstan, J. A. 2015. The movielens
datasets: History and context. ACM Trans. Interact. Intell.
Syst. 5(4):19:1–19:19.
Herlocker, J. L.; Konstan, J. A.; Terveen, L. G.; and Riedl,
J. T. 2004. Evaluating collaborative filtering recommender
systems. ACM Trans. Inf. Syst. 22(1):5–53.
Julian, K. D.; Lopez, J.; Brush, J. S.; Owen, M. P.; and
Kochenderfer, M. J. 2016. Policy compression for aircraft
collision avoidance systems. In 2016 IEEE/AIAA 35th Dig-
ital Avionics Systems Conference (DASC), 1–10.
Kula, M. 2015. Metadata embeddings for user and item
cold-start recommendations. In Bogers, T., and Koolen, M.,
eds., Proceedings of the 2nd Workshop on New Trends on
Content-Based Recommender Systems, volume 1448, 14–
21. CEUR-WS.org.

Lam, S. K., and Riedl, J. 2004. Shilling recommender sys-
tems for fun and profit. In Proceedings of the 13th Interna-
tional Conference on World Wide Web, WWW ’04, 393–402.
New York, NY, USA: ACM.
Liang, H.; Pei, X.; Jia, X.; Shen, W.; and Zhang, J. 2018.
Fuzzing: State of the art. IEEE Transactions on Reliability
67(3):1199–1218.
Miller, B. P.; Fredriksen, L.; and So, B. 1990. An empiri-
cal study of the reliability of unix utilities. Commun. ACM
33(12):32–44.
O’Mahony, M.; Hurley, N.; Kushmerick, N.; and Silvestre,
G. 2004. Collaborative recommendation: A robustness anal-
ysis. ACM Trans. Internet Technol. 4(4):344–377.
Resnick, P., and Varian, H. R. 1997. Recommender systems.
Commun. ACM 40(3):56–58.
Resnick, P.; Iacovou, N.; Suchak, M.; Bergstrom, P.; and
Riedl, J. 1994. Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings of the
1994 ACM Conference on Computer Supported Cooperative
Work, 175–186. New York, NY, USA: ACM.
Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In Proceedings of the International Conference on
World Wide Web, 285–295. New York, NY, USA: ACM.
Zhao, X.; Zhang, W.; and Wang, J. 2015. Risk-hedged ven-
ture capital investment recommendation. In Proceedings of
the 9th ACM Conference on Recommender Systems, RecSys
’15, 75–82. New York, NY, USA: ACM.

